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Preface

The International Conference on Formal Engineering Methods (ICFEM) started in
Hiroshima, Japan in 1997 and provided a forum for both researchers and practitioners to
discuss and exchange their experience and results in research on theories, methods, lan-
guages, and supporting tools for integrating formal methods into conventional software
engineering technologies to provide more effective and efficient approaches to large-
scale software engineering. ICFEM 2024 was back to Hiroshima in Japan, the city of its
birth, from December 2 to 6, 2024. At its first return to Hiroshima since 1997, ICFEM
2024 celebrated the 25th anniversary of the ICFEM conference series.

ICFEM 2024 received 50 submissions from 21 countries worldwide. The selection
process was rigorous, with each paper receiving at least three Single-blind reviews. After
thorough discussions, the program committee accepted 23 research papers. However, one
paper was later withdrawn, resulting in 22 papers being included in the proceedings. The
final acceptance rate was 44%. The accepted papers span a wide range of research areas,
covering both theoretical foundations and practical applications of formal engineering
methods.

We were ‘honored to have the three distinguished keynote speakers Mike Hinchey,
Naijun Zhan, and Mark Lawford, who shared their invaluable insights during their talks.

Mike Hinchey presented a work entitled Formal Specification of Autonomy Fea-
tures with ARE and KnowLang. co-autored with Emil Vassev; both researchers are from
Lero, the Science Foundation of Ireland Research Centre for Software Department of
Computer Science and Information Systems, University of Limerick, Limerick, Ireland.
Autonomous systems, such as autonomous vehicles, extend regular software-intensive
systems with special autonomy features upstream. The identification of such features
is not necessarily an easy task. Sometimes, they can be explicitly stated by stakehold-
ers or in preliminary material available to requirements engineers. Often though, they
are implicit, so a process of formal specification intended to capture the autonomy fea-
tures has to be undertaken. The speaker elaborated on a methodology for capturing and
specification of autonomy features where autonomy requirements are captured with ARE
(Autonomy Requirements Engineering) and then are specified with KnowLang, a frame-
work for knowledge representation and reasoning. In this approach, autonomy features
are detected as special self-* objectives backed up by different capabilities and quality
characteristics. The self-* objectives provide the system’s ability to autonomously dis-
cover, diagnose, and cope with various problems. The captured autonomy requirements
are formally specified with the KnowLang notation and then compiled to a knowledge
base that is to be used by the KnowLang Reasoner.

Naijun Zhan (School of Computer Science, Peking University, Beijing, China) pre-
sented a work entitled Synthesizing (Differential) Invariants by Reducing Non-Convex
Programming to SDP. Hybrid systems are integrations of discrete computation and con-
tinuous physical evolution. To guarantee the correctness of hybrid systems, formal tech-
niques on modelling and verification of hybrid systems have been proposed. Hybrid CSP
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(HCSP) is an extension of CSP with differential equations and some forms of interrup-
tions for modelling hybrid systems, and Hybrid Hoare logic (HHL) is an extension of
Hoare logic for specifying and verifying hybrid systems that are modelled using HCSP.
The speaker reported an improved HHL prover, which is an interactive theorem prover
based on Isabelle/HOL for verifying HCSP models. Compared with the prototypical
release, the new HHL prover realises the proof system of HHL as a shallow embedding
in Isabelle/HOL, rather than a deep embedding. In order to contrast the new HHL prover
in shallow embedding and the old one in deep embedding, the speaker demonstrated the
use of both variants on the safety verification of a lunar lander case study.

Mark Lawford (Department of Computing and Software, McMaster University,
Canada) gave a talk entitled Challenges and Opportunities in Assurance of Software
Defined Vehicle. Automotive innovation is increasingly software driven. As a result of
the competitive environment requiring a yearly release of new automotive models fea-
turing the latest driver assistance features and innovation in electrification, safety critical
software is being developed at an unprecedented scale on extremely tight deadlines. To
be competitive automotive manufacturers and parts suppliers need to change how they
develop and assure software intensive systems. This presents a tremendous opportunity
for researchers in the application of formal methods and model-based software engi-
neering to have a significant impact on industry practice. This talk highlighted recent
work on model-based software engineering, incremental assurance, and the potential for
applications of formal methods to help the automotive industry make the transition to
the Software-Defined vehicle.

The EasyChair conference management system was set up for ICFEM 2024, sup-
porting submissions, reviewing, and volume-editing processes. We acknowledge that
it is an outstanding tool for the academic community. We would like to thank all the
authors who submitted their work to ICFEM 2024. We are grateful to the program com-
mittee members and external reviewers for their high-quality reviews and discussions.
Finally, we wish to thank the Organizing Committee members for their hard work and
continuous support. We would also like to thank Springer and the publishing team man-
aged by Ronan Nugent for their continuous support and assistance in producing the
conference proceedings. Finally, we extend our sincere gratitude to our sponsors Murata
Science and Education Foundation and Huawei Technologies Co., Ltd. and the support-
ers Information Processing Society of Japan, Hiroshima University, and IEEE Japan
Council.

We hope that the papers in these proceedings will engage readers and inspire new
ideas for future research.

September 2024 Kazuhiro Ogata
Dominique Mery

Meng Sun

Shaoying Liu
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Abstract. Reducing the gap between natural language requirements
and precise formal specifications is a critical task in requirements engi-
neering. In recent years, requirement engineering is becoming increas-
ingly complex alongside the growing intricacy of system engineering.
Most requirements are expressed in natural language, which can be
incomplete and ambiguous. However, formal languages with strict seman-
tics can accurately represent certain temporal logic properties and allow
for automated verification and analysis. This often limits the application
of verification techniques, as writing formal specifications is a manual,
error-prone, and time-consuming task. To address this, this paper pro-
poses a framework that leverages Large Language Models (LLMs) to
achieve automated conversion of natural language requirements to Com-
putation Tree Logic (CTL). To address the issue of dataset scarcity,
we leveraged the interactive and generative capabilities of LLMs. By
constructing a random generation algorithm and utilizing prompt engi-
neering, we generated an NL-CTL dataset using LLMs. The gener-
ated dataset was then used to fine-tune the T5-Large model, enhancing
its generative capacity. To improve generalization, this paper proposes
the use of the GPT-3.5 Atomic Proposition (AP) Recognition method,
which eliminates the constraints of using the framework across differ-
ent domains. A series of experimental evaluations showed that the fine-
tuned LLM achieved an accuracy of 46.4%, whereas the LLM with few-
shot learning using only prompt engineering achieved only 2% accuracy,
demonstrating the feasibility of this approach.

Keywords: Requirements Engineering (RE) - Specification
Generation + Computation Tree Logic (CTL) - Large Language Models
(LLM)
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1 Introduction

As the scale and complexity of software continue to increase, software reliability
issues have gained significant attention. Requirements engineering (RE), being
the first phase of the software life cycle, is a crucial part of software engineer-
ing. Efficient management of RE can accelerate the software development process
[21]. However, in practical software development, most software requirements are
written in natural language. The inherent ambiguity and imprecision of natural
language make it challenging to effectively ensure the completeness, consistency,
correctness, and reliability of software systems, thereby increasing the difficulty
of analyzing and processing requirements [29]. Formal specifications are math-
ematical descriptions of system properties, behaviors, and constraints, used in
fields such as system design, requirements analysis, and automated reasoning in
computer science. Compared to natural language (NL), formal specifications can
precisely define system behavior, eliminate ambiguity, and support the design
and verification of system software. Due to the need for substantial domain-
specific knowledge and a significant amount of manual work, the application of
formal specification languages is still almost exclusively performed by domain
experts.

The difficulty of using a formal specification language leads to the gap
between its advantages in software development and actual practice, so the
direct conversion of natural language to formal language is necessary for the
practical application of formal specification language. Writing formal specifica-
tions manually is not only a threshold for writers, but also very time-consuming
and error-prone, especially when dealing with complex systems. To address this,
researchers have introduced numerous automatic and semi-automatic methods
for formalizing requirements, such as template-based and deep learning methods
for generating formal specifications. Both methods do speed up the process of
writing formal specifications and reduce the probability of human error. How-
ever, template-based generation of formal specifications has poor flexibility and
users can only choose according to the template language. Formal specifications
generated based on deep learning may be more dependent on the statistical pat-
terns in the training data, and thus to a certain extent there may be linguistic
styles or patterns related to the training data. These methods have certain lim-
itations, including the need for extensive manual construction and maintenance
work, as well as difficulties in adapting to different environments [30]. However,
with the latest advances in Natural Language Processing (NLP) technology, par-
ticularly the development and application of generative Large Language Models
(LLMs), it has become possible to overcome these limitations [2]. LLMs may be
more accurate and coherent when generating formal specifications due to their
pre-training approach which gives it better language understanding and gener-
ation capabilities, and thus the generated specifications may be more accurate,
coherent, and better able to understand input natural language.

This paper uses LLMs to automatically generate formal specifications
in Computation Tree Logic (CTL) based on natural language requirements,
addressing the high specialization demands of formal verification methods. CTL,
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a branching-time logic, offers higher computational efficiency in model checking,
and many industrial model checking tools use CTL as the specification language.
A significant bottleneck in NL-to-CTL research is the lack of data. Although
modern statistical methods can surpass rule-based approaches [4], they typi-
cally require large datasets, which are costly and difficult to collect, necessitat-
ing highly specialized annotators [3]. To supplement the data creation process
and mitigate the need for large datasets, this paper employs pre-trained LLMs.
Specifically, we use GPT-3.5 to assist in dataset creation and fine-tune the T5-
Large model [27] to achieve the conversion from NL to CTL. To validate the
usability of this method, we set up a series of evaluation experiments. By train-
ing and testing the LLM on generated NL-CTL datasets of varying scales, we
revealed that the more training data used, the higher the accuracy of the fine-
tuned model. Additionally, when comparing the fine-tuned LLM with the base-
line prompted GPT-3.5, the experimental result shows that the fine-tuned LLM
achieved an accuracy of 46.4%, whereas the LLM using only prompt engineering
for few-shot learning achieved only 2% accuracy, demonstrating the feasibility
of the proposed method.
Our main contributions are as follows:

1. Construct a cross-domain NL-CTL dataset. To address the lack of
datasets, we leveraged the interaction and generation capabilities of LLMs.
By developing a random generation algorithm and prompt engineering, we
used an innovative GPT-3.5-assisted framework to generate a dataset of 3K
enhanced NL-CTL pairs. Additionally, we enhanced the generality of the data
by using the “lifted” version of NL. and CTL, where all atomic propositions
(APs) in the data were hidden.

2. Fine-tuning the lifted NL-to-CTL model. We fine-tuned the T5-Large
model using the constructed dataset to improve the generative capabilities of
the large model. To enhance generalization, we using the GPT-3.5 AP Recog-
nition method to eliminate the constraints of using the framework across dif-
ferent domains. The experimental result showed that the fine-tuned T5-Large
model achieved higher accuracy compared to the baseline prompted GPT-3.5,
demonstrating the feasibility of the proposed method.

This paper is organized as follows. Section 2 gives an overview of LLMs and
CTL semantics and discusses related work. Section 3 describes the framework
and algorithm of our approach. In Sect. 4, we introduce the experimental setup
and discuss the experimental evaluation result. Section 5 concludes our work.

2 Background and Related Work

2.1 Large Language Models

Large Language Models (LLMs) are neural network models trained using massive
text data based on deep learning techniques. They are capable of understanding
and generating natural language text and perform well in a variety of linguistic
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tasks, including translation, text generation, summarization, Q&A and dialogue
systems. Common LLMs include OpenAl’s GPT series, Google’s BERT and
T5. Among them, GPT-1 explores the natural language task solving capability
of decoder-only Transformer architecture under the “pre-training + fine-tuning”
paradigm; GPT-2 preliminarily verifies the effectiveness of scaling up the param-
eters of the model (scaling up law), and explores the natural language cue-based
LLMs. GPT-3 explores the effect of language models with hundreds of billions
of parameters for the first time, and proposes a task solving method based on
“context learning”; The CodeX [5] uses code data to fine-tune GPT-3 to improve
code ability and complex reasoning; InstructGPT [25] uses reinforcement learn-
ing based on human feedback (RLHF) to strengthen the ability to follow human
commands and align human preferences; ChatGPT is similar to InstructGPT,
but further introduces dialog data for learning, thus strengthening the ability to
have multi-round conversations; GPT-3.5 [1] is able to handle a longer context
window, and can be used to solve tasks with “contextual learning”; CodeX [5]
uses code data to fine-tune GPT-3 to improve coding ability and complex reason-
ing. Handle longer context windows, has multimodal comprehension capability,
and has significantly improved capabilities in logical reasoning and complex task
processing.

LLM techniques mainly include model pre-training, setup fine-tuning, cue
learning, knowledge enhancement and tool learning. Natural Language to Pro-
gramming Language, Codex [5] model is a GPT language model fine-tuned based
on GitHub public code, which is capable of generating corresponding code based
on natural language instructions. Natural Language to Formal Specification,
nl2spec [11] is a framework for applying LLMs to derive formal specifications (in
temporal logic) from unstructured natural language.

2.2 Computation Tree Logic

Computation Tree Logic (CTL) is a type of branching-time logic, meaning that
its time model is a tree-like structure where the future is uncertain; there are
multiple paths in the future, any of which could be the actual path that is
realized. CTL belongs to a class of temporal logics that includes Linear Tempo-
ral Logic (LTL). LTL provides an intuitive and precise mathematical notation
for expressing linear-time properties. LTL formulas are suitable for describing
requirements with both logical and temporal properties, allowing for automated
verification. The syntax of LTL can be recursively defined over a set of atomic
propositions AP as follows:

pu=true|a| - |1 Apa| Op | p1Ups (1)

where a € AP is an atomic proposition, ¢ is an LTL formula. — and A represent
propositional logic negation and conjunction, respectively. () is the temporal
operator next, and U is the temporal operator until. The formula Oy represents
that ¢ is true in the next state. 1 Ugo indicates that g is true in some state, and
1 is always true in all preceding states. Additionally, disjunction Vv, implication
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—, eventually ¢, and always [J can be derived from the aforementioned operators
as derived operators. Among them, (), U, ¢, and [ are temporal operators. LTL
can only be verified along a single timeline and cannot distinguish temporal
behaviors on different paths. This limitation becomes evident when dealing with
branching systems, such as concurrent systems and distributed systems.

CTL addresses this issue by introducing path quantifiers, allowing for the
description of temporal behaviors across different paths. It describes the prop-
erties of system states as they change over time by combining path quantifiers
with temporal operators. The syntax of CTL is as follows:

pu=true|a| ¢ | 1 Ada | Vo | Jp (2)
pu=Q¢| d1Uda | 0| Op (3)

where ¢ represents a state formula, while ¢ represents a path formula, indicating
a path starting from the root node of the tree. V is the universal quantifier,
indicating all future paths. 3 is the existential quantifier, indicating the existence
of at least one future path. From these two formulas, it can be observed that in
CTL formulas, temporal operators are always preceded by path quantifiers.

2.3 Related Work

For decades, researchers have developed methods to translate natural language
sentences into various target language formulas [3,13,28]. In recent years, how to
obtain better automated tool support for efficiently converting natural language
requirements into formal specifications has become a research hotspot in the
field of formal methods. A significant amount of work in this new phase has
utilized interactive training [33,37] and physical demonstrations to infer task
constraints [7,9,31] and LTL formulas [8,10,32,35]. Early work on translating
natural language into formal specification focused on grammar-based approaches
[16,23], which can handle structured natural language. Additionally, there are
interactive methods that use SMT solving and semantic parsing [15], as well as
structured temporal methods rooted in robotics [36] and planning [26]. However,
to simplify tasks, previous works has often made strong assumptions to constrain
the input text or the output formulas, thereby limiting flexibility and generality.
For example, Finucane et al. [13], Taylor et al. [34], and Howard et al. [19] all use
the traditional approach of preprocessing the given English input by restricting
the input NL and extracting syntactic information, then identifying the patterns
or rules of the TL through classification and running an attribute-based grammar
parser to derive the target logical format.

With the rise of ChatGPT, neural networks have also been used for the gen-
eration of formal specifications in the past two years. For example, methods
include training STL models from scratch [18], fine-tuning language models [17],
or applying GPT-3 in a one-shot manner [14,24]. Cosler et al. [11] used LLMs to
map formal sub-formulas back to the corresponding natural language segments
in the input, aiming to detect and resolve the inherent ambiguities in natural lan-
guage system requirements. However, this method still requires human interven-
tion to interactively add, edit, and delete sub-translations to improve accuracy.
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Chen et al. [6] proposed an accurate and generalizable framework for converting
English instructions from NL to TL by constructing an NL-TL dataset using
LLMs and fine-tuning the LLM to enhance the accuracy of formal specification
generation. Due to the lack of datasets across different application domains and
the inherent complexity of CTL itself, the translation between natural language
and CTL has not been adequately studied. Therefore, this paper proposes a
methodological framework for the automatic generation of CTL formulas from
natural language requirements using LLMs.

3 Methodology

) P LT )
. : Our Solution: g
Requriements { - :
(NL) o NL preprocessing i Systems
: : * el L S Lifted-NL : :
= Data Generation &
e 3 | o : =
Transform 1;;;:;?;13 Modeling
| CTL ]
i NL-CTL| !
A 4 ’ few-s%lot °.2) pairs A 4
A Re learning
Requirements | !
I System
Specifications NL
Models
(CTL)

v
A

Model Checking

A4

Validation Results

Fig. 1. The workflow of our study.

Figure 1 shows the workflow of formal verification in requirements engineering
with black arrows. In this workflow, experts convert natural language require-
ments into formal specifications using template-based or manual methods [12,22]
and model the system using various formal models. Finally, model checking is
performed on both the requirement specifications and the system model to ver-
ify the correctness of the requirements. Our approach leverages LLMs to achieve
the conversion of natural language requirements to CTL. First, natural language
requirements are pre-processed and converted into lifted NL to facilitate LLM
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understanding. These are then input to the fine-tuned LLM to generate corre-
sponding CTL formulas. The fine-tuning of the T5-Large model involves three
steps: first, constructing a random algorithm to generate a series of CTL for-
mulas; second, using few-shot learning methods with LLMs to convert these
into lifted NL to enrich the dataset; and third, fine-tuning the LLM with the
generated NL-CTL pairs to improve model accuracy.

3.1 Lifted NL and Lifted CTL

Hsiung et al. [20] proposed a new LTL nomenclature called ‘lifted’ LTL, which
hides specific atomic propositions (APs) corresponding to individual operations.
In this approach, each AP is replaced with a placeholder prop_i. To enhance the
generality of model, we represent data as ‘lifted” NL and CTL. This allows our
model to be trained on the general context of instructions, regardless of specific
APs. The correspondence between full NL/CTL and lifted NL/CTL is shown in
Fig. 2.

In previous work, models trained for NL to TL (Temporal Logic) conversion
typically involved translating specific actions into APs. For example, the AP
“Create a response in Slack” could be formalized as “CreateSlack”. This neces-
sitates each work to standardize its own AP content and style, thereby affecting
generalization. In this paper, instead, we use the CPT-3 AP Recognition method
to hide all APs in the data during fine-tuning and achieve a lifted model for the
conversion from lifted NL to CTL. That is, we used LLMs to recognize APs in
natural sentences, such as “create a response in Slack”, and instead of translating
it to “create_Slack”, it is masked as a placeholder prop_i.

4 A

Full NL:

For all paths, if the vehicle is driving on the

highway then it will stay within the lane until it has
hed the exit ramp.

Lifted NL:
For all paths, globally if (prop_1) holds then
(prop_3) is true until (prop_2).

s o Lifted CTL:
o rgotigtiay) = (Staywithinlen) U | 4G (rop_1) > ((rop_3) U (rop.2))
- /

Fig. 2. Illustration of lifted NL and lifted CTL.

3.2 Data Generation

This paper utilizes the LLM GPT-3.5 to aid in generating lifted NL and
CTL pairs to construct the model fine-tuning dataset. Previous work primar-
ily adopted an intuitive approach, using prompt engineering to generate addi-
tional NL-CTL pairs through few-shot learning with various NL-CTL pairs as
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prompts. However, it was found that under this approach, the model consistently
generated NL and CTL with syntactic structures similar to the given prompts,
thereby limiting the diversity of the data. To encourage the model to produce a
wider variety of sentences, we instructed it to generate corresponding NL from
different CTLs.

We used a binary tree generation algorithm to randomly synthesize various
pre-order CTLs, which are then converted into ordered expressions according
to specific rules. Algorithm 1 illustrates the method for randomly synthesizing
various pre-order CTLs, where the input is the maximum number of APs N and
the output is a pre-order CTL pre_orderCTL. All operators are classified into
those with only one_leaves and those with two_leaves. First, a random integer
value within (1, V) is obtained as the total number of APs, then a randomly
ordered prop list of length AP_nums is generated and divided into several sub-
lists sub_lists (Line 4-7). For each sub-list, operators are randomly appended to
the left until each prop occupies a position in the binary tree (Line 9-12). Finally,
by attaching operators with two_leaves, these modified sub-lists are assembled
back into a complete CTL (Line 13).

Algorithm 1. Algorithm for randomly generating pre-order CTL.

: Input: N: Maximum number of APs
: Output: pre_orderCTL: Synthesized pre-order CTL

1
2
3
4: twoleaves = [&, —, <, |, U];

5: oneleaves = [-, AG, EG, AF,EF, AX,EX, A, EJ;
6: AP_nums = Random.randint(1, N);

7: sub_lists «— getRandomCombination AP(AP _num);
8

9: repeat

10:  sub.list < insertRandomOperators(two-leaves, one_leaves);
11:  sub CTL < sub.list

12: until sub_lists = ()

13: pre_orderCTL «— getPreOrederCT L(sub-CTL, two-leaves);

To make the input CTL more understandable to GPT-3.5, operators
were represented by words indicating their meanings (e.g., = (implies),
< (equivalent), V (or), etc.). GPT-3.5 then attempted to generate original NL
sentences that closely match the semantics of the CTL. During this process,
the NL-CTL pairs in the prompts were carefully selected to enhance lexical and
structural diversity. We collected 200 NL instructions from 10 volunteers famil-
iar with robotic tasks and randomly selected 100 NLs as a prompt pool and
another 100 NLs as manual test data. In each iteration, 20 pairs were randomly
chosen from the prompt pool to serve as prompts for GPT-3.5, with examples
of prompts shown in Fig. 3.
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Try to transform the computation tree logic into natural languages, the operators in the
computation tree logic are: negation, imply, and, equal, or, all path globally, exists a path
globally, all path finally, exists a path finally, all path, until, exists a path, all path next,
exists a path next.You only need to reply in natural language, do not reply with anything
else.

The examples are as following:

CTL: (all path finally(prop_1 imply all path next(negation prop_2)))
natural language: (prop_2) will not be true in the next step after (prop_1) becomes true.

CTL: all path globally(prop_1 imply (exists(negation prop_2 until prop_2)))
natural language: Whenever (prop_1) is true, (prop_2) will eventually be true, but it might
be false until then.

CTL: all path globally((prop_2 imply all path next(all path(prop_3 until prop_1) or all path
globally(prop_3))))

natural language: If (prop 2) is true, then in the next step, either (prop 3) will be true until
(prop 1), or (prop 3) will always be true.

CTL: all path globally(prop_1 imply (exists a path finally(prop_2) or exists a path
finally(prop_3) or exists a path finally(prop_4)))

natural language: If (prop 1) is true, it must be possible to eventually reach a state where
either (prop_2), (prop_3), or (prop_4) is true.

CTL: all path(prop_1 equal prop_2)\nnatural language: For all possible execution paths, the
state property p is true if and only if the state property q is also true.

CTL: " + original_sent + "\nnatural language:'

Fig. 3. Prompts for converting from synthesized CTL to NL via GPT-3.5.

3.3 Model Fine-Tuning

After constructing the dataset, it is used to fine-tune the LLM to enhance the
accuracy of NL2CTL conversion. The T5 model [27], proposed by the Google
Brain team, is a sequence-to-sequence (Seq2Seq) model based on the Trans-
former architecture. Its primary feature is converting various NLP tasks (such
as translation, summarization, and question answering) into a unified frame-
work for training, using a text-to-text unified model paradigm, which ensures
model flexibility. The T5 model employs mixed-precision training and adaptive
optimizers to accelerate the training process, and it utilizes data filtering and
dynamic batching to improve data efficiency, boasting excellent generalization
and transfer capabilities. T5-Large, a variant within the T5 family, has approxi-
mately 770 million parameters, making it a medium-sized pre-trained model. In
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this paper, the T5-Large (770M) model is chosen as the base LLM for model
fine-tuning, with experimental settings described in Sect. 4.

4 Implementation

4.1 Experimental Setup

The paper focuses on the feasibility of converting NL to CTL via LLM, and
the experiment is focused on enhancing the NL2CTL capability of the LLM by
fine-tuning it. The purpose of the experiment is to demonstrate the feasibility
of implementing NL2CTL using a LLM, and to show the effect of the size of
the training dataset on the ability of the LLM to NL2CTL. The experiment
consists of three main approaches: Improved NL-CTL transition performance
by fine-tuning the T5-large model as shown in Fig.4; Hide APs as “prop.i”,
anonymize them with the “prop_i” placeholder to maintain the generality of the
framework; Generate NL-CTL datasets by prompting GPT-3.5 to direct it to
generate datasets suitable for fine-tuning the T5-large model as shown in Fig. 5.

T5-Large ) train100
Data Processing: S train500
Delete invalid data, [¢—— Qggg# —{ train1000
organize data - train2000
N2CTL L train3000
dataset

A

learning rate as 2.56e-5
a batch size of 16

Set fine-tuning @ _| aweight decaying ratio as 0.01

parameters run 20 epochs for each setting
training set (0.99)

Fine-tuning testing set (0.01)
Parameters L

Fig. 4. Fine-tuning the T5-Large Model.

The LLM we chose for fine-tuning was T5-large, which was trained separately
using five datasets with different amounts of data (containing 100, 500, 1000,
2000 and 3000 pieces of data, respectively). For all the fine-tuning experiments
on T5-large model, we choose the learning rate as 2.56e-5, a batch size of 16,
a weight decaying ratio as 0.01, and run 20 epochs for each setting. Training
and testing is performed on a single RTX 2080 Ti x2 (22GB) GPU. For the
finetuning on lifted models, the input dataset is split into a training set (0.99)
and a testing set (0.01). Finally, all fine-tuned models are tested on the same
dataset (containing 500 data points), and to ensure the accuracy of the results,
we perform three rounds of testing for each fine-tuned models, and eventually
take the average of the test accuracies.

In practical applications, we need to structure the APs in CTL (such as
“verb_noun”) to allow for direct connection with controllers. Then We use GPT-3
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to identify APs in the sentence and mask them as “prop_i”. APs are anonymized
using placeholders similar to “prop_i” to maintain generality and simplify inte-
gration with control systems. In the future, if there are fields to use the NL2CTL
framework proposed in this paper, it can be combined with AP recognition task.

The ThH-Large model excels in multi-task learning and unified text-to-text
methods for a wide range of NLP tasks. GPT-3.5, on the other hand, has advan-
tages in complex task processing and generation capabilities and is more suitable
for demanding application scenarios. The T5-Large model is categorized as a
compact model, in contrast to the GPT-3.5, which is recognized as a substan-
tially expansive model within the spectrum of large-scale models. The experi-
ments use GPT-3.5’s implementation of NL2CTL via an end-to-end approach
as the baseline for the experiments, i.e. GPT-3.5 directly converts NL to CTL
with a small amount of learning and cueing, and the same is tested using the
same dataset for the learned cued GPT-3.5 model. The experiment stores the
results of each tuned or learned model test in a table for easy manual review,
and calculates the test accuracy for comparative analysis.

Unsatisfied
‘ A Generate Evaluate
0T GPT4 ) T >
: \ / Response Response

Prompt T Satisfied T

— ~——

Example Task ~—— ~—
CTL NL2CTL

Dataset Dataset

Fig. 5. NL2CTL Dataset Generation

4.2 DataSet

We did not find a suitable NL2CTL dataset in the currently publicly available
dataset, and in order to allow fine-tuning in experiments as well as to test LLMs,
we propose a method to let it generate a suitable dataset by prompt of GPT-
3.5. Different datasets conforming to the CTL syntax were randomly generated
by this method (training dataset with 100, 500, 1000, 2000, 3000 data and test
datasets with 500 data). The process of generating the NL2CTL dataset is shown
in Fig. 5.
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4.3 Baseline

Objective: You are a Computation Tree Logic (CTL) expert. Your answers always need to follow the
following output format and you always have to try to provide a CTL formula. You may repeat your
answers.End your answer with "So the final CTL translation is:" + the result obtained by translation. Please
answer in text format only, do not use latex or markdown format.

Method: Translate the following natural language sentences into a CTL formula and explain your translation
step by step. Remember that A means "for all paths", E means "there exists a path", X means "next", U
means "until", G means "globally", F means "finally", which AG means "This is always true for all paths",
and EF means "eventually exist".

The formula should only contain atomic propositions or operators |, &, ~, -=>, <->, A, E, X, U, G, F. Atomic
propositions are replaced by (prop _n)

Example:

Natural Language: For all paths, globally if (prop_1) holds then (prop_3) is true until (prop_2).

Given translations: {}

Explanation: "(prop_1) holds" from the input translates to the atomic proposition (prop_1).

"(prop_3) is true until (prop_2)" from the input translates to the subformula (prop_3) U (prop_2).

"if x then y" translates to an implication x ->y, so "if a holds then c is true until b" translates to an
implication (prop_1) -> ((prop_3) U (prop_2)).

"Globally" from the input translates to the temporal operator G. "For all paths" translates to the path
quantifier A.

Explanation dictionary: {"(prop_1) holds" : "(prop_1)", "(prop_3) is true until (prop_2)" : "(prop_3) U
(prop_2)", "if (prop_1) holds then (prop_3) is true until (prop_2)" : "(prop_1) -> ((prop_3) U (prop_2))",
"Globally" : "G", "For all paths" : "A"}

So the final CTL translation is: A G ((prop_1) -> ((prop_3) U (prop_2))).FINISH

Natural Language: There exists a path where eventually request (prop_1) is followed by a grant (prop_2).
Given translations: {}

Explanation: "Request (prop_1)" from the input translates to the atomic proposition (prop_1) and "grant
(prop_2)" translates to the atomic proposition (prop_2).

"Eventually" translates to the temporal operator F. "Followed by" is the natural language representation of
an implication.

"There exists a path" translates to the path quantifier E.

Explanation dictionary: {"Request (prop_1)" : "(prop_1)", "grant (prop_2)" : "(prop_2)", "Eventually" : "F",
"Followed by" : "->", "There exists a path" : "E"}

So the final CTL translation is: E F ((prop_1) -> (prop_2)).FINISH

Fig. 6. Prompts for converting from synthesized NL to CTL via GPT-3.5.

To the best of our knowledge, there is no relevant research on the implementation
of NL2CTL using LLMs, so we decided to use the test results of GPT-3.5 directly
converting NL to CTL with few-shot learning as a baseline to compare with
those of the fine-tuned T5-Large model in the experiments, and the results of
the comparison are shown in Fig.8. Generating the baseline: create a dialogue
with GPT-3.5, add examples and appropriate guidelines to the prompt as in
Fig.6. GPT-3.5 learns from this conversation and then sends it the test data,
records its responses and compares them with the CTL in the dataset, records
the responses in a table, and calculates the test accuracy of the baseline (Fig. 7).
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Fig. 7. Testing the Fine-tuned T5-Large Model

4.4 Evaluation

Each model after fine-tuning or a few-shot learning converts the NL in the test
dataset to a CTL, and the CTL generated by the conversion is exactly the same
as the CTL corresponding to the NL in the dataset then current.oun: + 1, and
currenteount is used to record the amount of data that has been successfully
converted from NL to CTL by LLMs at that time. When all the data in the test
dataset has been converted, calculate the test accuracy:

Accuracy = counteorrect/(total + 1) (4)

where total is the total number of test data, i.e. 500. Obviously, the higher the
accuracy, the better the ability of LLM to convert NL to CTL. For the stability
and reliability of the results, we carried out the same test for each model three
times, and took the average of all the test accuracy as the final test accuracy.

4.5 Experimental Results

As shown in Table 1, after the experiment the test accuracy of T5-Large_train30
00 reaches 47% on average. T5-Large_train2000, T5-Large_train1000, T5-Large
_train500 and T5-Large_train100 have decreasing test accuracy in order. Among
them, the test accuracy of T5-Large_train100 is the lowest, namely 2%. As shown
in Fig. 8, the size of the fine-tuned dataset is positively but non-linearly corre-
lated with the test accuracy, and as the fine-tuned dataset gets larger, the growth
of its data has less impact on the test accuracy. From the table it can be seen that
the test accuracy of the lowest T5-Large_train100 is still much higher than that
of the GPT-3.5 after few-shot learning. It is not difficult to see that the slightly
fine-tuned categorized LLM (T5-Large) will also perform better on NL2CTL
than the few-shot learning large-scale LLM (GPT-3.5).
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Table 1. The test accuracy of the fine-tuned LLM (T5-Large) and the prompted LLM
(GPT-3.5).

LLM Under Test Data Volume Test Accuracy
GPT-3.5_prompt (Baseline)|0 raw 0.02
T5-Large_train100 100 raws 0.088
T5-Large_train500 500 raws 0.408
T5-Large_train1000 1000 raws  |0.434
T5-Large_train2000 2000 raws  |0.450
T5-Large_train3000 3000 raws  |0.464

Test Accuracy Plot

0.4 4
g —— Test Accuracy Curve
2 0.3+ ---- Baseline
(>U ® Trainl00_accuracy
g ® Train500_accuracy
2, ® Train1000_accuracy
:E ’ ® Train2000_accuracy
2 Train3000_accuracy

0.1

0.0 T T T T T T

0 500 1000 1500 2000 2500 3000

Accuracy

Fig. 8. Test Accuracy vs. Training Dataset Size Chart

5 Conclusion

In this work, we propose a framework for automatically generating CTL based
on natural language requirements, leveraging LLMs, from both data generation
and model training perspectives. In this process, we constructed a dataset con-
taining approximately 3K enhanced NL-TL pairs to fine-tune the T5 model. The
fine-tuned T5-Large model achieved higher accuracy compared to the baseline
prompted GPT-3.5, demonstrating the feasibility of the proposed method.

In future work, we plan to improve the method for randomly generating
CTLs (e.g., by increasing the number of iterations) to enhance the quality of the
dataset and thereby improve the model’s accuracy. Additionally, we also plan
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to explore the generation of formal models using LLMs to further automate the
model checking-based formal verification methods.
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Constructing correct formal models is challenging since the modeller can often
refer to only incomplete and informal information about the target system, such
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Abstract. The process of formal modelling often involves the “verify-
and-repair” exploration in which modellers find necessary constraints
missing after they fail to verify properties. The bottleneck in this pro-
cess is figuring out how to modify predicates of the behaviour from the
limited feedback from verification tools. To tackle the difficulty, we pro-
pose a method for repairing faulty events in Event-B models by gener-
ating what we call an invariant preservative, a predicate such that the
behaviour becomes invariant-preserving if we add it to the model. Our
method automatically derives the necessary condition on the invariant
preservative that has limited occurrences of free variables so that it can
be added to a certain part of the model. Then, our method obtains a
predicate that satisfies the condition through quantifier elimination. To
apply quantifier elimination to Event-B models written in a set-theoretic
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guard predicates for mutant models constructed from different types of
models. We also compare the repaired models to the original ones and
discuss the usefulness of our methods in developing models.
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Introduction

as documents in natural languages.

To support this phase, there are modelling methods for the design exploration
of the target system. For instance, in the Event-B method [1], (1) the modeller
declares the system’s safety property and behaviour as a set of predicates struc-
tured as invariants and events, (2) the modelling environment generates proof
obligations (POs) of the invariant preservation, i.e. the predicates declared as
invariants are really inductive invariants of events, and (3) the modeller attempts
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to discharge POs with the help of automatic provers; a successful proof guaran-
tees the invariant preservation, while a failed proof indicates that the modeller
should restart from (1) to repair the model. A correct-by-construction formal
model is created through iterations of these steps.

In practice, however, this process is difficult to carry out seamlessly because
the modeller struggles to find a way to repair the model (e.g. identifying missing
constraints and adding them to the model) when a proof is failed. The assistance
with the repair process is currently limited; the modeller has to devise a way
to modify the model based on the feedback given by verification tools, such as
incomplete proof trees from an automatic prover or a counterexample from a
model checker.

To repair a model, the modeller can update the behaviour of the system
(specified as events) or the criteria of the correctness (specified as invariants) [15].
In this paper, we focus on repairs by updating events because the modeller
will firstly try to see which behaviour is necessary to meet the criteria, before
changing the criteria. We discuss updating invariants in Sect. 6.3.

Existing repair methods for formal models typically use model checkers to
generate concrete execution traces of the model and construct predicates from
them inductively [4,12]. Such methods suffer from state explosion if they are
applied to large-scale models or if generated predicates are partial.

To address the problem, we propose a method that generates what we call
an invariant preservative (IP), a predicate such that the behaviour becomes
invariant-preserving (repaired) if we add it to the model. We focus on formal
modelling methods based on guarded commands and instantiate the method for
the Event-B formalism.

The central part of our method is the automatic derivation of the weakest
IP from the PO of the invariant preservation. We firstly derive the condition
the IP must satisfy: it should make the model invariant-preserving, it should
be the weakest, and free occurrences of variables in it should be appropriately
restricted. We then use a quantifier elimination (QE) method to obtain a predi-
cate that satisfies the derived condition and explicitly represents the constraints
on the system’s behaviour. Since major QE algorithms are designed for formulas
of inequalities of polynomials while the language of Event-B has set-theoretic
constructs (e.g. functions as sets of ordered pairs), we also provide a method to
encode Event-B models written in set-theoretic language into ones written in
integers and arithmetic operators.

To evaluate our method, we injected faults into Event-B models, including
large-scale ones and ones using set-theoretic constructs. The result showed that
our method successfully repaired all faulty models in a timely manner.

The rest of this paper is organised as follows: Sect. 2 describes the modelling
and verification in the Event-B method. In Sect.3, we define IP and its use
for repair. Sections4 and 5 elaborate on our method for generating IPs and
case studies for evaluating it, respectively. In Sects. 6 and 7, we discuss how our
method can be used, can be extended, and differs from existing methods. We
finally conclude this study in Sect. 8.
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Fig. 1. Structure of Event-B model components (Color figure online)

2 DModelling and Verification in Event-B

2.1 Modelling in Event-B

Event-B [1] is a method for system-level modelling and analysis. For analysing
reactive systems, the formalism is designed with influences from the Guarded
Command language and Action Systems. The language of Event-B supports set-
theoretic constructs, including relations and functions as sets of ordered pairs.

Components of Event-B models are shown in Fig. 1.} Static aspects of the
target system are modelled as a context, which declares user-defined datatypes s,
constants ¢, and their properties (axioms) A(s, ¢). Dynamic aspects of the system
are modelled as a machine, which declares the referred context C, variables
v, predicates of inductive invariants I(s,c,v), and state transitions as events
{eo, . ..}. An event is composed of parameters p., guard predicates G.(s, ¢, v, pe),
and before-after predicates Be(s,c,v,pe,v'). A before-after predicate describes
the relation between the before-state v and the after-state v’.2

Remark 1. For a predicate to be legitimate as an invariant or a guard, free
variables that occur in it must be restricted: v’ (after-state variables) cannot
occur free in invariants or guards because they are constraints on the current
state; p. (parameters) cannot occur free in invariants because they are global
(non-event-specific) constraints.

Ezxample 1 (Parking lot example). Consider a parking lot with a traffic light
(Fig.2). Variable n is the number of cars inside. Constant ncapacity is the capacity
of the parking lot (Qcapacity_limit). Variable L is the colour of the traffic light,
which can be green only when there are vacancies (invariant @Qgrn_avail). Event
enter_unsafe declares that a car may enter (before-after predicate @inc_n) when
the traffic light is green (guard @grn). Note that variables not declared before
the : | delimiter of then clause are interpreted to keep the same value as before.
In this example, L’ = L. In the next section, we show that this event does not
preserve invariant @grn_avail.

! We omit modelling constructs not directly relevant to our method, such as ones
related to refinement. See [1] for the full definition of Event-B components.

2 For simplicity, we omit user-defined datatypes s and constants ¢ from notations of
predicates (e.g. A, I(v)) in the rest of this paper.
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Context Cparking

event enter_unsafe

sets color where

constants green, red, Ncapacity
axioms

Qcolor: color = {green, red}
@green_red: green # red
@capacity: 0 < ncapacity

@grn: L = green
then
@incn: n :|n =n+1
end

Machine Mparking

sees Charking
variables n,L .
invariants (]
Qtypes: n e NAL € color
Qcapacity_limit: n < ncapacity
@grn_avail: L = green = n < Ncapacity
event enter_unsafe ... end T cars inside
event leave ... end

Parking
lot

Fig. 2. Event-B model of parking lot example

2.2 Invariant Preservation

One of the primary properties of Event-B models we desire to ensure is the
invariant preservation, i.e. the conjunction of predicates declared in the invari-
ants clause is actually an inductive invariant. The preservation of the invariant
by event e can be expressed as the following formula of PO:

Vpe,v,v". ANT(0) A Ge(v,pe) A Be(v,pe,v') = I(V').

Ezample 2 ((Failed) preservation of invariant by enter_unsafe). The formula of
the preservation of the invariant by enter_unsafe is as follows:

Veolor, green, red, Neapacity, 7, L,n', L.
( color = {green, red} N green # red A 0 < Ncapacity
An€NALe color An < Neapacity A (L = green = 1 < Neapacity )
ANL=greenAn' =n+1AL =1L
= (0’ e NA L' € color An' < neapacity A (L' = green = n' < neapacity)))-

The intuition of this PO is as follows: When the traffic light is green (this
implies that the parking lot is not full), if a car enters and the light stays green,
the parking lot should not become full (because the light stays green).

This formula is not valid. The counterexample is 7 = nNcapacity — 1: in this
case, incrementing n makes the parking lot full (n” = n+1 = ncapacity ), While the
traffic light is kept green. Therefore, enter_unsafe does not preserve @Qgrn_avail.
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event enter_far_from_full
where
Qgrn: L = green
Qfar_from_full:
n < Ncapacity — 1
then
@incn: n :|n =n+1
end

event enter_almost_full

where

Qgrn: L = green

@almost_full : n = Ncapacity — 1

then

@Qinc_n_red:

n,L :|n=n+1AL =red

end

(a) Case: 1 < Ncapacity — 1

(b) Case: n = Ncapacity — 1

Fig. 3. Events of parking lot example (repaired)

3 Repairing Machines with Invariant Preservatives

Modelling in Event-B typically aims at exploring the design of a controller’s
behaviour so that it preserves the invariant, which comes from the given require-
ments document. Therefore, the modeller repeats the process of constructing
events, failing to prove the invariant preservation, and modifying the machine.

There are different causes of failures in discharging POs for invariant preser-
vation [15]. The most typical cause is that some constraints are missing that
properly limit the state transition not to violate the invariant. Although the
invariant may sometimes turn out to be too strong or inappropriate, it is worth
firstly trying to investigate constraints that make the event invariant-preserving.

In the previous example of the failed proof, we can ‘repair’ the event by
adding a guard or modifying before-after predicates.

Ezample 8 (Repairing events by adding guards or before-after predicates). The
formula of invariant preservation in Example 2 was not valid because of the
possibility of the case 7 = Ncapacity — 1. We need a case analysis here: If n =
Ncapacity — 1, then we should turn the traffic light red as a car enters; otherwise
(n # Ncapacity — 1), the light should be kept green. The latter is the case of
N < Ncapacity — 1 because of invariant n < Neapacity (Qcapacity_limit).

To reflect this, after duplicating event enter_unsafe as enter_far_from_full and
enter_almost_full, we can make them invariant-preserving (Fig. 3) by:

— Adding guard n < ncapacity — 1 (@far_from_full) to enter_far_from_full,
— Adding guard n = Ncapacity — 1 (@almost_full) to enter_almost_full,
— Adding before-after predicate L' = red (@Qinc_n_red) to enter_almost_full.

We call such predicates added to preserve invariants invariant preservatives
(IPs).

Definition 1 (invariant preservative). An invariant preservative for event
e is a predicate ¢ (v, pe,v") such that:

Vpe, v,V Ge(v,pe,v) N ANI(0) A Ge(v,pe) A Be(v, pe,v') = I(v').



Repairing Event-B Models Through Quantifier Elimination 23

We can add an IP ¢, for e as a guard or a before-after predicate of e:

— Adding ¢, as a guard of e restricts the situation where e is enabled. We call
such ¢. IP guard. For instance, @Qfar_from_full in Example 3 is an IP guard.
v" should not occur in ¢, (Remark 1) so that ¢, is legitimate as a guard.

— Adding ¢. as a before-after predicate of e changes the state transition of e. We
call such ¢, IP before-after predicate. For instance, @Qinc_n_red in Example 3
is an IP before-after predicate.

In practice, we want the weakest IP (i.e. the essential missing constraint) to
maximise the debugging information. In contrast, for instance, L is the trivial
IP that repairs every event, but it is not informative for debugging.

Although we manually devised IPs in Example 3, this process is hard,
error-prone, and time-consuming in practice, especially for complex machines.
Section4 describes our method for generating the weakest IP, while adjusting
free variables that occur in it, e.g. so that it can be added as a guard if we want.

Note that missing necessary predicates is not the only cause of the invariant
violation. In some cases, we need to modify the existing event to repair it. In
Sect. 6.2, we describe how our method is useful for such cases, too.

4 Methods

4.1 Overview

The overview of our method is shown in Fig. 4.

Expressed in full Event-B language (set-theoretic language with user-defined datatypes)

Expressed in subset of Event-B language
(all variables have Z type, signature: {=, #, <, >, <, 2, —, +,*, constants from Z})

Faulty Implicit Explicit

i X i X Repaired
Faulty Event-B machine invariant invariant epaire
Event-B preservative preservative Event-B

N (encoded) .
machine for each event for each event machine
Step 1 Step 2 Step 3 Step 4
Encoding Generating | | Applying QE Decoding & adding
machine invariant tools invariant
inZ preservatives preservatives

Fig. 4. Method overview

We aim at repairing a faulty Event-B machine, i.e. a machine with events
that violate invariants. The method is composed of four steps:

1. We encode the target machine specified in the set-theoretic language as a
machine written in integers and arithmetic operators so that QE tools will
be able to handle the predicates in Step 3.
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2. For each event, we generate an IP from the encoded machine. Although it
satisfies the condition an IP should satisfy (Definition 1), it does not represent
how the behaviour should be changed (we call it an implicit IP.)

3. We apply QE to obtain the predicate that satisfies the condition of implicit TP
(explicit IP). It explicitly represents the constraint on the system’s behaviour.

4. The explicit IPs are decoded to the set-theoretic language and added to the
faulty machine to repair it.

The rest of this section elaborates on Steps 1-3 (Sects. 4.2-4.4) and an imple-
mentation (Sect.4.5).

4.2 Step 1: Encoding Machines in Integers

To obtain explicit IPs in Step 3, we rely on QE tools that implement QE algo-
rithms for first-order formulas of polynomial equations and inequalities [3,10].
For instance, Redlog [5] supports first-order formulas with the following signa-
ture: {=,#,<,>,<, >, —, +, *, (constants from Z)}.

Since Event-B machines are written in set-theoretic notations, we encode
them in a subset of Event-B language so that QE tools can process the models.

Also, encoded machines tend to have simple but long sentences (e.g. Fig. 5b)
to let QE tools handle them. In Sect. 6.1, we discuss possibilities of more sophis-
ticated encoding techniques.

Encoding User-Defined Datatypes. We define a mapping from values of
user-defined types to integers and use it for encoding.

Ezample 4 (Encoding machine Mparking ). For encoding user-defined datatype
color, we use the following mapping: {red — 0, green — 1}.

sets color
constants green, red, Ncapacity constants ncapacityz
axioms axioms
@color: color = {green, red} Q@Qcapacity_-i: 0 < ncapacityz
Q@green_red: green # red variables ngz, Lz
@capacity: 0 < Ncapacity invariants
variables n,L | | @types_i:
invariants 0<nzA(Lz=0V Lz=1)
Q@types: n € NALE color @Qcapacity_limit_i:
Qcapacity_limit: n < ncapacity nz < NcapacityZ
Qgrn_avail: @Qgrn_avail_i:

L = green = n < Tcapacity Lz=1=nz< TNcapacityZ

Encoding Pairs, Sets, Relations, and Functions. We use the following
rules: (1) Ordered pairs of values are also encoded as integers using a mapping
table. (2) Sets without extensional definitions are given extensional definitions
with a few elements. (3) A set s is encoded as an integer i, such that the value
of is’s each binary digit is the value of the indicator function of s.
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Ezample 5 (Encoding sets and functions).

We consider a simple library system for managing which books are borrowed
by whom. Figure 5a shows a part of the library system written in the full Event-
B language. It has user-defined datatypes BOOKS and MEMBERS, which are
defined without extensional definitions; the definition simply declares there are
these (possibly infinite) sets. Variable ind is the lending status expressed as a par-
tial function from BOOKS to MEMBERS (a subset of BOOKS x MEMBERS).
Event lend is about updating the lending status by adding a new pair of a book
and the member who borrowed it to Ind.

The machine of the library system can be encoded as Fig. 5b. Firstly, BOOKS
and MEMBERS are redefined as follows:

BOOKS = {b(), bl} AN b() 7é bl, MEMBERS = {mg,ml} A\ myg 75 mai.
Then, we encode BOOKS, MEMBERS, and their product as follows:

{bo — 0,01 — 1},{mg — 0,my — 1},
{(b07m0) = 07 (b07m1) = 17 (b17m0) = 27 (b17m1) = 3}

Since Ind is a subset of BOOKS x MEMBERS = {(b0, m0), (b0, m1), (b1, m0),
(b1,m1)}, we encode it as a 4-bit integer (invariant @il_i_set).

Since Ind is a (partial) function, (b0, m0) and (b0, m1) cannot be elements of
Ind at the same time. Thus, in the integer encoding of Ind (Indz), the Oth bit
or the 1st should be 0. The same applies to the 2nd — 3rd bits because (b1, m0)
and (bl,ml) cannot be elements of Ind at the same time. Invariant @il_i_pfun
declares this: Indz should not be **11 or 11** in binary notation.

Event lend is encoded as follows. Guard @params_type_i declares that values
of parameters bookz and memby are either 0 or 1. Guard @book_not_lent_i is an
encoding of @book_not_lent: book € dom(ind). If bookz = 0 (i.e. (book, memb) is
either (b, mo) or (bg, m1)), pairs (b, mo) and (bg, m1) should not be elements
of Ind (i.e. Indz should be **00 in binary notation.).

Before-after predicate @update_lending_i is an encoding of Ind’ = Ind U
{(book, memb)}: for instance, for (book, memb) = (by,myg), if the 2nd bit of
Indz, is 0, we update it to 1 (Ind}, = Indz + 4); otherwise, no update happens
(Ind7, = Indyz).

4.3 Step 2: Generating Implicit Invariant Preservatives

In this step, for each event e, we generate an (implicit) IP for e. As we described
in Sect. 3, we aim at (1) generating the weakest IP, and (2) restricting the occur-
rences of free variables in the IP, e.g. to let us limit the situation where e is
enabled by adding a guard predicate (Remark 1).

For instance, to obtain an implicit IP guard for event e, we construct the
following predicate 7. (v, pe):
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sets BOOKS, MEMBERS variables Ind
invariants @il: ind € BOOKS -+ MEMBERS // -+: partial function
event lend any book, memb
where Qparams_type: book € BOOKS N memb € MEMBERS
@book_not_lent: book ¢ dom(ind)
then Q@update_lending: Ind: | Ind’ = ind U {(book, memb)} end

(a) Before encoding

variables Ind; invariants @Qil_i_set: 0<Indz <16
Qil_i_pfun: Indz # 3 Alndz # 7 A lndz # 11N
Indyz, 75 12 A Indy, 7& 13 A lndy, 75 14 A Indy, 75 15
event lend any bookz, memby
where @Qparams_type_i: (bookz =0V bookz = 1) A (membz = 0V membz = 1)
@book_not_lent_i:
(bookz =0 = (Indz =0V Indz = 4V Indz = 8 V Indz = 12))A
(bookz =1 = (Indz =0V Indz =1V Indz = 2V Indz = 3))
then
@Qupdate_lending_i: Indz: |
(bookz = 0 A membz = 0 A (V;c(1.357.011,1315) Indz = 1) == Indy, = Indz)A
(bookz = 0 A membz = 0 A (Vic0.2,46,8,1012,14) IMdz = 1) == Indy, = Indz + 1)\
(bookz = 0 A membz = 1 A (\/ie{2,3,6,7,10,11,14,15} Indz = i) = Indy, = Indz)\
(bookz = 0 A membz = 1 A (Vi6{0,1,4,5,8,9,12,13} Indy = i) = Indy, = Indz + 2)A
(bookz, = 1 A membz =0 A (\/ZE{4 5,6,7,12,13,14,15} Indz = i) = Ind} = Indz)A
(bookz = 1 A membz =0 A (\/16{0,172’3‘&9,10 11} Indz = i) = Indy = Indz + 4)A
(bookz =1 Amembz = 1A (V;e(s.0,1011,1218,14,15) Indz = i) = Indz = Indz)A
(bookz = L A membz = 1A (Vic(01.23.4567 ndz = i) = Indy, = Indz +8) end

(b) After encoding

Fig. 5. Encoding of Library system (Example 5)

Definition 2 (Weakest invariant preservative guard). The weakest
invariant preservative guard of event e is the following predicate . (v, pe):

Ye(v,pe) := V0. (ANT(V) A Ge(v,pe) A Be(v, pe,v') = I(v")).

~e is legitimate as a guard because primed variables (v") do not occur free in
t (Remark 1).

Theorem 1. -y, is the weakest predicate among IP guards for event e.

Proof. Let g.(v,p.) be an arbitrary IP guard of e. Then,

Vpe,vﬂ)/. (ANT(v) A(Ge(v,pe) A ge(v,pe)) A Be(v,pe,v') I(v ))
= Vpe, v, V. (ge(v,pe) = (AANT(v) A Ge(v,pe) A Be(v,pe,v") = I(v")))
= Ve, v.(ge(v,pe) = Y'. (ANT(V) A Ge(v,pe) A Be(v,pe,v") = 1(v")))

< Vpe7v~(ge(v7pe> - '76(1}7]96))'
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Ezxample 6 (Implicit invariant preservative guard for enter_unsafe). The weakest
IP for (encoded) enter_unsafe from Example 1 is as follows:

Venter_unsafe (Nz, Lz, Ncapacityz) =
Vng, Ly. (0 < Neapacityz A0 <nz A (Lz =0V Lz = 1) Ang < Necapacityz
A (Lz =1 = nz < Neapacityz) NLz =1 Any =nz+ 1ALy =Ly
= (0<ny A (LY, =0V L) =1) Anf < NeapacityZ

A ( IZ =1 = n/Z < ncapacityl)))'

If we add predicate Yenter_unsafe s & guard of event enter_unsafe, the invariant
becomes preserved by the event. However, this predicate is an implicit repair;
it represents the condition on the guard to be added (“nj, and L/, should not
occur in it, and it should strengthen the constraint on the before-state so that
I(n%,, LY,) will hold under given A, I, Genter_unsafe; a1ld Benter unsafe” ) rather than
how we should strengthen the constraint. An explicit representation of the guard
that satisfies this condition is generated in the next step (Sect.4.4).

Note that other restrictions of free variable occurrences are also possible.
For example, if we bind only n/, (i.e. we change the quantification to Vn/) to
generate another implicit IP for enter_unsafe, the generated IP is only legitimate
as a before-after predicate (because a primed variable L7, occurs free in it), but
it describes the constraints on nj, without using L7,. We discuss this in Sect. 6.2.

4.4 Step 3: Obtaining Explicit Invariant Preservatives Through
Quantifier Elimination

We apply a QE tool to v.(v,p.) for generating a predicate that satisfies the
condition of the implicit IP (Sect. 4.3). In other words, in this step, we obtain a
predicate that explicitly represents how the guard should be strengthened.

Ezample 7 (Obtaining explicit invariant preservative guard for enter_unsafe). By
applying a QE tool to the weakest IP obtained in Example 6, removing redun-
dancy, and decoding the result, we obtain the following predicate:

Ncapacity — 10 — 1 7é 0.

Adding this to the event as its guard makes the event invariant-preserving.

This predicate is suitable as a guard because it represents the requirements
for the behaviour of the system from the viewpoint of application (“incrementing
n while keeping the light green should be allowed only when n # ncapacity — 1,”)
while the predicate in Example 6 does not directly give such information.
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4.5 Implementation

We implemented Steps 2-3 as a plug-in of the Rodin platform [2], which is an
environment for modelling and proving in Event-B. It generates the weakest IP
guard for each event of the machine selected by the user (Fig.6).

Fig. 6. Tool implementation

It uses Redlog [5] for eliminating quantifiers. It also detects and removes
redundant parts of QE results, such as clauses contradictory with assumptions
(AN IAG), by using the Z3 SMT solver [11].

5 Evaluation

5.1 Procedure

To evaluate our method, we injected faults to correct Event-B machines and
checked whether our method could repair them by generating IP guards (Fig. 7).

Firstly, for each target machine, we encoded the machine in the language
of integers (Step 1 of the method). We carried out the encoding by manually
applying systematic rules. By using the Rodin platform, we checked that the
encoding was correct, i.e. all events of the encoded machines preserve invariants.

Next, we constructed mutants of each encoded target machine. A mutant was
created by removing a guard predicate of an event. For instance, assume that we
have a machine with two events shown in Fig. 3. Then our mutation procedure
constructs four mutants, each of which lacks one of four guards.

Then, we used our implementation to generate the weakest IP.

Finally, in the Rodin platform, we checked that generated predicates worked
as IP guards, i.e. we succeeded in proving invariant preservation after adding
them to corresponding events. Moreover, using the Z3 SMT solver [11], we
checked whether each generated IP was weaker than or equivalent to the removed
guard under the assumptions (axioms, invariants, and existing guards).

3 The materials and detailed results are located at https://github.com/tsutomu-
kobayashi/ICFEM2024.
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Fig. 7. Evaluation based on mutants

5.2 Materials

The target materials we used are as fol-
lows:

Carsl, Chapter 2]. This system controls
the traffic of cars on an island and
the mainland, which are connected
by a narrow bridge with traffic lights
and sensors. The parking lot example
(Example 1) is a simplified version of
this.

Satellites [14]. This system models the
mode logic of autonomous flight forma-
tion for satellites from the European
Space Agency. We used this example
to check our method’s applicability to
industrial-scale models including vari-
ables of sets.

Library. A part of this system is shown
in Example 5. We used this example
to check our method’s applicability to

Machine ||VI|||I|||E|||G] |t

Parking |2 |4 [3 |5 |<0.6
Carsg 1 1212 |2 |<0.5
Cars; 3 5114 |6 |<1.1
Carsg 7 11|18 |18 [< 1.6

Carss 18 (34|16 |41 |< 2.5
Satellitesy|3 |7 |6 |13 |< 0.9
Satellites; |5 24 1< 0.8
Satellitess|12 [55]20 (78 |< 9.4
Satellitess |20 (89|32 |154|< 16.2

ot
—
)

Satellitess|20 |7 |32 (134|< 7.9
Satellitess |22 |4 |32 |141|< 1.0
Library |1 |2 |2 |5 |<04

Table 1. Scales of materials for eval-
uation. |V|, |I|, |E|, |G| respectively
are numbers of variables, invariants,
events, guards. ¢ is the time (sec) taken
for method Steps 2-3 per machine.

models including a partial function from/to user-defined datatypes without

extensional definitions.

Table1 shows the scales of the target materials (encoded faulty Event-B
machines). Cars and Satellites have multiple versions of machines that corre-
spond to different levels of abstraction. For example, Cars has four levels from
the most abstract machine (Carsg) to the most concrete one (Carsz) that have

different numbers of machine constructs.

5.3 Results

The column ¢ of Table 1 shows the time (in

seconds) spent to generate explicit IPs

(Steps 2—-3) per machine. Even for large-scale models such as Satellitess, it took
no more than 16.2s. Therefore, we conclude that our method is efficient enough
to be used during iterative modelling. Note that the execution environment was

a MacBook Pro (2021) with 64GB RAM.
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After adding generated IP guards to the faulty encoded machine, we suc-
ceeded in discharging all invariant preservation POs in the Rodin platform, i.e.
we succeeded in repairing all the faulty machines.

We compared the generated guards and original guards. From the semantic
viewpoint, all generated guards were either equivalent to the original (encoded)
ones under the assumptions (axioms, invariants, and existing guards), or weaker
than the original ones. The ratio of strictly weaker guards was: 25% (Cars), 25%
(Library), 50% (Parking), and 32% (Satellites).

From the syntactic viewpoint, there were several complicated guards,
particularly for large-scale machines or the Library machine that use set-
theoretic constructs. For instance, consider the Library machine without guard
@book_not_lent:

sets BOOKS, MEMBERS variables Ind
invariants @il: Ind € BOOKS + MEMBERS |/ +: partial function
event lend_mutant any book, memb
where Q@params_type: book € BOOKS AN memb € MEMBERS
// removed @book_not_lent: book ¢ dom(ind)
then @Qupdate_lending: Ind: | Ind" = ind U {(book, memb)} end

We (manually but systematically) decoded the generated guard using the
mapping shown in Example 5 and obtained the following IP:

Ind = @ (1)
V book = by A (Ind = {(b1,m0)} V Ind = {(b1,m1)} V Ind = {(b1, mo), (b1, m1)}) (2)
V book = by A (ind = {(bo, mo)} V Ind = {(bo, m1)} V Ind = {(bo, mo), (bo, m1)}) (3)
V book = by A memb = mg A ( \/ Ind =1) (4)
Le{{(bg,m0)},{(bg,m0),(b1,m0)},{(bg,m0),(b1,m1)}}

V book = bg A memb = mq A ( \/ Ind =1) (5)
te{{(bg,m1)},{(bg,m1),(b1,mq)},{(bg,m1),(by,m1)}}

V book = by A memb = mg A ( \/ Ind =1) (6)
Le{{(b1,m0)},{(bg,m0),(b1,m0)},{(bg,m1),(b1,m0)}}

V book = b1 A memb = mq A ( \/ Ind =1). (7)

te{{(b1,m1)}.{(bg,m0).(b1,m1)},{(bg,m1),(by,m1)}}

Under invariants and guards, (1)—(3) are equivalent to the original guard
@book_not_lent: book ¢ dom(ind), and (4)—(7) are equivalent to (book, memb) €
Ind. Thus, this guard is weaker than the original one as it also allows for cases
such that (book, membd) € Ind, i.e. the book is already borrowed by the member.
Indeed, in that case, updating Ind to Ind U {(book, memb)} does not violate
the invariant. In other words, the original guard is stronger as it disables the
unnecessary occurrence of lend in which lending a book to a member who already
has it because such occurrence does not change any state.

In this way, generated guards can be weaker than the original ones when the
original ones reflect additional requirements represented in the form of guards.
Finding such requirements missing is not within the scope of our method and
generally cannot be automated. However, it is reasonably possible that modellers
find necessary stronger guards by checking the generated weakest guards.
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The above example also shows the fact that generated guards are sometimes
complex in the encoded style. Therefore, a systematic decoding method would
increase the practicality of our approach.

7

Findings from the evaluation: Our method successfully repaired all faulty
models quickly enough to support the iterative modelling process. Generating
the weakest predicates has the potential to support the case in which stronger
predicates are necessary to represent missing requirements, beyond our goal
of repair for invariant preservation. Although the correctness of generated
predicates has been confirmed, further investigation is necessary to determine
the conciseness or comprehensibility of them.

6 Discussions

6.1 Possible Extensions

Systematic Encoding/decoding Methods. Automatic or systematic encod-
ing methods will increase the practicality of the encoding step (Sect.4.2). Such
methods can be supported by existing mathematical concepts.

For example, the Cantor pairing function m(n,m) = 2(n+m)(n+m-+1) +
m can be used to encode an ordered pair of integers as an integer. Note that
the pairing function is bijective, i.e. the two integers obtained by unpairing are
unique.

We will investigate whether such encodings can be expressed in languages
supported by QE tools and whether they can be processed with QE algorithms
quickly enough.

Applicability to Other POs. In addition to the invariant preservation, Event-
B has other kinds of POs. For instance, Event-B supports the construction of
models with a stepwise refinement approach by providing special POs. Specifi-
cally, a modeller can (1) construct an abstract machine without much details of
the target system, (2) construct a concrete version with more details, then (3)
verify that the behaviours of two machines are in a forward simulation relation
by discharging special POs. Our method can also be applied to these POs.

Extending to Other Formalisms. Although we designed our method for
Event-B, the approach with slight modifications should be applicable to other
variants of the Guarded Command language because the notions of guard, state
transition, and verification using an inductive invariant are common.

6.2 Suggesting Various Repairs

We proposed repairing an event by adding the weakest IP guard to the event.



32 T. Kobayashi and F. Ishikawa

However, there are other repairs that may be better at clearly expressing
the requirements of the target system. Therefore, various repairs need to be
suggested for the practical support of model repair, so that the user can choose
the best one.

In this section, we discuss how our method can be extended to generate
various repairs.

Repairs as Adding IPs with Different Free Variable Occurrences. As
we described in Sect. 4.3, (in addition to quantifying all primed variables,) there
are other restrictions on free variable occurrences for generating IPs. It is helpful
to generate multiple IPs by changing the restriction.

For instance, we can obtain multiple IPs for event enter_unsafe (Sect.2.1,
Example 1) as follows. Let ¢(n, L,n’, L) be

AN I(n, L) A Genter,unsafe(na L) A Benter,unsafe(nv L7 nlv L/) S I(n’, Ll)-
Then, under the assumption of A A I A Genter_unsafe /A Benter_unsafe,

1. vn/,L'. ¢(n,L,n', L") is equivalent to n # Ncapacity — 1.
2. Vn'. ¢(n,L,n', L") is equivalent to n = Neapacity — 1 = L’ # green.

This result indicates that there are two ways to repair as we described in Sect. 3:
(1) limiting the event occurrence to the case where n # ncapacity — 1 (as in
enter_far_from_full (Fig.3a)), or (2) turning the traffic light red if it is going to
be full (as in enter_almost_full (Fig. 3b)).

Repairs as IPs with Different Strengths. Our method generates the weak-
est invariant preservative to provide the repair with the maximum debugging
information. However, the weakest one may provide too much information.

For instance, we obtained the following guard as the IP guard for a mutant
of Library example (Sect. 5.3):

book ¢ dom(Ind) V (book, memb) € Ind.

Although this is weaker than the original guard @book _not_lent: book ¢
dom(Ind), the original guard would be preferred because it meets the require-
ment of the library system better. Therefore, it is useful to suggest IPs that
imply the weakest one. To do this, we can apply heuristics or pattern-based
approaches for generating multiple candidates. For example, we can generate
well-typed predicates and extract those that imply the weakest one.

Repairs as Removing Existing Predicates and Generating IPs.
Although our main goal was to generate a predicate added to the event without
modifying its existing predicates, we can also modify an event to repair it by
removing predicates before generating an IP.

In some cases, we cannot obtain a meaningful IP without removing existing
predicates.
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Ezample 8 (Weakest IPs that disable event or make event infeasible). Consider
the following event evt:

variables x invariants Qinv: 0<z
event evt where Qgrd: T then @bap: 2’ =0 end

The weakest implicit IP guard for event evt is
Vil 0 <z AT A2 =0=0<2

By eliminating the quantifier, we obtain an additional guard x < 0. Adding this
predicate as a guard disables the occurrence of the event because it is contra-
dictory with invariant @inv.

The weakest IP before-after predicate for the event is

O<zATAZ =0=0<2,

which is equivalent to an additional before-after predicate x < 0Va’ # 0. Adding
this predicate as a before-after predicate makes the event infeasible because it
is contradictory with invariant @inv and before-after predicate @bap.

In this case, assuming that the invariant is appropriate, this result indicates
that we need to modify the existing before-after predicate @Qbap: ' = 0. If we
remove @bap, the weakest IP before-after predicate for the evt becomes

0<2zATAT=0<2".

It is equivalent to x < 0V0 < 2/, which can be added to evt as a modified version
of the before-after predicate to repair the event.

As this example shows, our method can be used to repair an event by mod-
ifying it; we remove a faulty predicate of the event and generate an IP that is
added to the event to replace the faulty one. The example demonstrates that
our method can detect the necessity of modifying the event rather than adding
missing predicates to repair it.

6.3 Applicability in Practical Contexts

We have focused on the repair approach by adding missing constraints on the
behaviour to repair the model for failure in invariant preservation proofs. In prac-
tice, the cause of the failure is not limited to missing constraints. Nevertheless,
our method can be applied firstly to investigate the possibilities for repair by
adding missing constraints. This will cover a large part of potential causes [15]
though no empirical study has yet revealed failure statistics for Event-B or for-
mal methods.

Although our method assumes that invariants are appropriate, our method
also provides insights even if the declaration of invariants is faulty. A com-
mon fault in Event-B modelling is declaring invariants that are too strong. For
instance, it is common to require that ¢(v) always holds, while there is an event
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of exceptional behaviour; a possible repair for this case is to weaken the invariant
to —(mode = Mexception) = ¢(v). In this case, our method generates an IP that
makes the event infeasible, in the same manner as Example 8, which implies that
the before-after predicate of the event or the invariant should be updated.

Our future work involves developing additional repair techniques for a com-
prehensive repair tool. Specifically, we will pursue suggesting repairs by updating
invariants. Combining such a tool with a repair guideline will also be useful.

7 Related Work

There are several studies on repairing models of Event-B (or classical B-method,
whose language is similar to Event-B’s). Hoang [15] classified causes of failed
proofs in Event-B and provided guidelines for interpreting failed invariant preser-
vation proofs, e.g. if the counterexample of the invariant preservation is unreach-
able, it means the invariant is too weak and it should be strengthened by adding
an invariant predicate. However, the paper does not explain how to fix the model.
The ProB model checker framework has a disprover [9], which efficiently gener-
ates counterexamples of the invariant preservation. Schmidt et al. [12] proposed
an interactive workflow for repairing B models. The approach uses a model
checker to obtain examples of traces, constructs constraints on states using pre-
defined templates, and uses a constraint solver to generate a predicate for repair-
ing the model. Cai et al. [4] proposed a tool that generates various candidates of
modifications of the target model and evaluates them to pick the one with the
best score. It constructs candidates by analysing concrete traces of state transi-
tions generated by a model checker. The evaluator based on machine learning is
trained to learn the state transitions of the original model, and it gives a high
score to a repair candidate if its state space is close to the original’s.

The primary difference between our method and those repair approaches is
that they generate concrete traces of event occurrences to construct repairs,
while ours does not. Because of this, our method is applicable to larger target
models. Moreover, the repair constructed with our method is guaranteed to be
the weakest (the most modest) among possible ones (Theorem 1).

QE has applications in a wide range of problems, including those in theorem
proving and software engineering. Dolzmann et al. [6] proposed a method for
automatic theorem proving of geometric problems using QE. Sturm et al. [13]
proposed a method using multiple QE tools to automatically synthesise certifi-
cates for verifying hybrid dynamical systems (e.g. Lyapunov function and induc-
tive invariant.) In Kovdcs and Voronkov’s method [8], for a loop of a program
using arrays, QFE is used to extract information, which is analysed and processed
by a theorem prover to obtain loop invariants. Unlike these methods, our method
uses QE for repairing formal models written in set-theoretic formulas.

Automated program repair has been intensively investigated in the software
engineering community [7]. Code completion or suggestion is another active area
for automated support of engineers, which is being accelerated with large lan-
guage models, e.g. GitHub Copilot. Those techniques for program code often
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apply heuristic or learning-based “generate-and-validate” approaches. Similar
automated support for engineers needs to be provided in formal methods as
well while “correct-by-construction” generation is more suitable in the context
of formal models as proposed in this paper.

8 Conclusion

In this paper, we tackled the problem of generating repairs of formal behavioural
models, which is crucial in developing formal models through the exploration of
designs. Our method generates the condition on the weakest predicate miss-
ing for preserving the invariant of a given Event-B model while controlling the
occurrences of free variables in it. We then use a quantifier elimination (QE)
tool to obtain a predicate that satisfies the condition. We also provide a method
for systematically encoding/decoding set-theoretic predicates into an integer-
based language to let QE tools handle Event-B models. For the evaluation,
we constructed mutations of correct Event-B models, including complex ones,
and succeeded in repairing them quickly. Our future work includes automated
encoding/decoding of models and suggesting various repairs, including ones that
involve modifications of the predicates existing in the target model.
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Abstract. Railway scheduling consists in ensuring that a set of trains
evolve in a shared rail network without collisions, while meeting schedule
constraints. This problem is notoriously difficult, even more in the case of
uncertain or even unknown train speeds. We propose here a modeling and
verification approach for railway scheduling in the presence of uncertain
speeds, encoded here as uncertain segment durations. We formalize the
system and propose a formal translation to PTAs. As a proof of concept,
we apply our approach to benchmarks, for which we synthesize using
IMITATOR suitable valuations for the segment durations.

Keywords: Railway scheduling - Timed automata + Parameter
synthesis - IMITATOR

1 Introduction

Railway scheduling consists in ensuring that a set of trains evolve in a shared
rail network without collisions, while meeting local or global, absolute or relative
timing constraints. This problem is notoriously difficult, and even more in the
case of uncertain or even unknown train speeds, for which the solution needs
to exhibit (or synthesize) speeds for which the schedule constraints are met
without collisions. This becomes even more tricky when the schedule constraints
(specifying, e.g., the time difference between two events in the network) become
themselves uncertain or unknown.

Contributions. In this paper, we offer a modeling and verification framework for
railway scheduling in the presence of uncertain speeds, modeled using uncertain
segment durations. Our railway model is close to that of [17] with some differ-
ences and simplifications: we consider a set of trains evolving in a shared network
made of a double-vertex graph modeling segments and stations. Segments have a
length and a maximum speed (which can be refined using the maximum speed of
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trains); such lengths and speeds are here encoded using traversal durations. Com-
pared to [17], we notably extend the model with the ability to express uncertain
or unknown speeds (and therefore durations). As target formalism for specifi-
cation and verification, we choose parametric timed automata (PTAs) [4], an
extension of timed automata (TAs) [3] with unknown timing constants, allowing
to model variability and uncertainty. Our contributions are three-fold:

1. a formal modeling of the train trajectory problem under uncertain speeds;
2. a translation scheme from our formal model into PTAs; and
3. a set of experiments to show the applicability of our approach.

Outline. We review related works in Sect. 2. We recall necessary preliminaries in
Sect. 3. We formalize our railway model (and the main problem) in Sect. 4. Our
translation to PTAs is described in Sect. 5. As a proof of concept, we apply our
translation to benchmarks in Sect. 6. We conclude in Sect. 7.

2 Related Works

A number of works attempt to formalize railway scheduling problems using for-
mal methods, with different model assumptions, and different target formalisms.
In [11,22], the focus is on the formalization of railway control systems using
extensions of hierarchical state machines called “Dynamic STate Machines”
(DSTMs). In [24,25], colored Petri nets are used to model railway interlocking
tables, with applications to Thai railway stations. Recent works such as [17,20]
use SAT techniques, with [17] modeling continuous dynamics in a quite involved
way.

Timed automata are a particularly well-suited formalism to model such prob-
lems, due to their ability to model concurrent and timed behaviors. Therefore,
a number of works (such as [9,14,15,18,23,26]) are interested in scheduling or
train interlocking problems. Timing uncertainty is not considered though.

In [12], so-called parametric timed automata (differing from usual PTAs [4],
as events can be parametrized too) are used to build monitors with variability
in order to perform runtime verification of computer-based interlocking systems;
an application to Beijing metro line 7 is briefly studied.

In contrast to these works, we address here uncertain or unknown segment
traversal durations; we allow in addition for parametric schedule constraints.

Beyond the specific application to railways, planning and scheduling using
TAs was considered in, e.g., [1,2,16]. Scheduling in the presence of uncer-
tainty was addressed in some works using parametric timed automata, including
scheduling problems with applications to the aerospace [8,13], or schedulability
under uncertainty for uniprocessor environments [5].

3 Preliminaries

We denote by N,Z,Q>0,R>o the sets of non-negative integers, integers, non-
negative rationals and non-negative reals, respectively. Let 1 € {<, <, =,>,>}.
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Clocks are real-valued variables that all evolve over time at the same rate.
Throughout this paper, we assume a finite set X = {z;,...,zy} of clocks. A
clock valuation is a function u : X — Ry, assigning a non-negative value to
each clock. We write 0 for the clock valuation assigning 0 to all clocks. Given a
constant d € R>q, p + d denotes the valuation s.t. (¢ + d)(z) = p(z) + d, for all
z e X

A (timing) parameter is an unknown rational-valued timing constant of a
model. Throughout this paper, we assume a finite set P = {p1, ..., pap} of param-
eters. A parameter valuation v is a function v : P — Q>.

A parametric clock constraint C is a conjunction of inequalities over X U P
of the form z < Zlgigﬂ?\ a;p; + d, with p; € P, and «;,d € Z. Given C, we
write p = v(C) if the expression obtained by replacing each z with u(z) and
each p with v(p) in C evaluates to true.

3.1 Parametric Timed Automata

Parametric timed automata (PTAs) extend TAs with a finite set of timing
parameters allowing to model unknown constants.

Definition 1 (Parametric timed automaton [4]). A PTA A is a tuple A =
(X, L, 0, b, X, P, I, E), where:

1. X is a finite set of actions;

2. L is a finite set of locations;

8. Ly € L is the initial location;

4. lg € L is the final location;

5. X is a finite set of clocks;

6. P is a finite set of parameters;

7. 1 is the invariant, assigning to every £ € L a parametric clock constraint I(€)
(called invariant);

8. E is a finite set of edges e = (£, g,a, R, {') where £,{' € L are the source
and target locations, a € X, R C X is a set of clocks to be reset, and g is a
parametric clock constraint (called guard).

As often, we assume PTAs extended with discrete global variables such as
integer- or Boolean-valued variables. We also assume standard parallel compo-
sition of PTAs, synchronized on actions. The parallel composition of n PTAs is
a PTA.

Definition 2 (Valuation of a PTA). Given a parameter valuation v, we
denote by v(A) the non-parametric structure where all occurrences of a param-
eter p; have been replaced by v(p;).

Remark 1. We have a direct correspondence between the valuation of a PTA
and the definition of a TA. TAs were originally defined with integer constants
in [3], while our definition of PTAs allows rational-valued constants. By assuming
a rescaling of the constants (i.e., by multiplying all constants in a TA by the
least common multiple of their denominators), we obtain an equivalent (integer-
valued) TA, as defined in [3]. So we assume in the following that v(A) is a TA.
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Definition 3 (Semantics of a TA). Given a PTA A= (X, L,y 4s,X,P, I, E)
and a parameter valuation v the semantics of the TA v(A) is given by the TTS
T”(A) = (6,50, X U R>q, —), with

1. 6 ={(l,n) € L x Rgo | p = I(0)v}, so = ({y,0),
2. — consists of the discrete and (continuous) delay transition relations:
(a) discrete transitions: (€, 1) v (¢, 1), if (€, ), (¢, 1) € &, and there exists
e=(,g,a,R ) € E, such that i/ = [u]r, and p = v(g).
(b) delay transitions: (¢, ) S (0, p+d), with d € Rxq, if Vd' € [0,d], (¢, 1 +
d) e 6.

Moreover we write (¢, 1) (@) (¢, 1) for a combination of a delay and discrete
transition if 3p’” : (£, ) A 0,1 S ().

Given a TA A with concrete semantics ¥ 4, we refer to the states of G as
the concrete states of A. A run of A is an alternating sequence of concrete
states of A and pairs of edges and delays starting from the initial state sy of
the form (o, po), (do, €0), (€1, p1),--- with ¢ = 0,1,..., ¢; € E, d; € R>g and

(di,e;)
(s pas) =" (lig1, iy1)-

4 Railway System Model

We formalize here our railway system model. Our railway model is inspired by
that of [17], with some differences that will be highlighted. A key difference is
the ability of our model to define parametric durations. We also propose a more
formal definition of the system.

4.1 Rail Network Graph

The infrastructure is modeled using a double-vertex graph [21], with nodes and
segments. Nodes can be normal nodes (not allowing stopping) or stations (where
trains may choose to stop or not). Segments have a length and a speed limit,
encoded here using a segment traversal time (which can be exceeded for slower
trains that have a speed limit smaller than the segment maximal speed). Bound-
ary nodes are start or end nodes for the trains. As in [17], we do not model slope,
angle or tunnels. However, cycles can be encoded, as opposed to [20] where this
is not immediate.

We assume that segments are bidirectional, that at most one train is allowed
in a segment, and that each segment is longer than any train; as a consequence, a
train can occupy at most two segments at once. As in [17], “to support modeling
of railway junctions, nodes of the graph have two sides (illustrated by black and
blue or red colors in Fig.1). In order to avoid physically impossible (e.g. too
sharp) turns, a train has to visit both sides when transferring via such a double-
sided node.” Different from [17], we model segment length and speed using a
traversal time; similarly, since trains can occupy two segments at the same time,
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we model the time needed to completely move from one segment to the next
one using another traversal time. These times are minimum, as slower trains
can potentially define longer times for each segment and pairs of segments (see
Definition 5).

Definition 4 (rail network graph). A rail network graph is a tuple G =
(N, B, St, Seg, SegDur, SegsDur, T') where

— N is the set of nodes,

— B C N s the set of boundary nodes,

- St C N is the set of stations,

— Seg is the set of segments,

— SegDur : Seq — Qxo UP assigns a (possibly parametric) duration to each
segment,

— SegsDur : (Seg x Seg) = Q> UP assigns a (possibly parametric) duration to
each pair of consecutive segments, and

— T €299 x N x 29 s the set of transitions.

Transitions encode the way trains can move via nodes. For example, given
a transition (I,n,r) € T, a train can move from any segment seg € [ to any
segment seg’ € r via n (or the opposite way).

Example 1. Consider the rail network graph in Fig.1. The graph contains 4
boundary nodes (A, B, C, D) and 3 stations (depicted in red, and labeled with
a number). Other nodes are normal nodes. Segments are labeled with a number
identifying them. We can assume for example that the minimum time to traverse
segment 1 is set to 8, the time to move from segment 1 to 2 is 2, while the time
to move from segment 1 to 3 is 1 (values not depicted in Fig. 1).

Fig. 1. An example of a rail network graph with 3 trains [17]



42 E. André

4.2 Trains

A train is characterized by its velocity limit and its connection. Different
from [17], weight, acceleration and deceleration are not encoded; we assume they
can be incorporated in segment durations. Trains always drive at their maximum
possible speed; they can however stop arbitrarily long in stations.

Connection Constraints. As in [17], a connection is a mapping of a train to
a non-empty list of nodes that must be visited in the given order. Only the first
and the last element can be boundary nodes. The list of nodes must start with
the boundary node denoting the starting point of the train. The list may then
contain nodes that must be visited; if a node is a station, then the train can stop
at this station. Trains can only stop at stations part of the connection. If the
last node of the list is a boundary node, then the train must end in this node. If
the last node of the connection is not a boundary node, then the train can end
in any boundary node.
Each train has exactly one connection.

Ezample 2 (train connections [17]). Consider the green train from Fig. 1. Assume
its connection is [A, 3]. This connection denotes that the green train must start at
node A, must stop at train station 3, but cannot stop at train station 1 because
it is not part of the connection. The train can end in any boundary node (even
though, considering the graph topology, only D can be an end node considering
the connection).

Consider the red train from Fig.1. Assume its connection is [D, A]. This
connection denotes that the train must depart from D, and reach A without
stopping at any intermediate station; note that there are three paths allowing
this connection.

Definition 5 (train). Given a rail network graph G = (N, B, St, Seg, SeqDur,
SegsDur, T), a train over G is a triple t = (TSegDur, TSegsDur, C') where

— TSegDur : Seg — Qo UP assigns a possibly parametric duration to each
segment,

— TSegsDur : (Seg x Seg) = Q>0 UP assigns a possibly parametric duration to
each pair of consecutive segments, and

- C € N* is the train connection.

Given a segment, a train drives at its maximum speed depending on the
network conditions: that is, the segment duration for this train is the maxi-
mum between the segment duration specified by the network (SegDur) and the
segment duration specified by the train (7T.SegDur)—and similarly for pairs of
consecutive segments.

4.3 Schedule Constraints

We formalize the schedule constraints from [17], allowing to compare the time
when a train arrives or departs from a node: arrival(t,n) (resp. departure(t,n))
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denotes the time when train ¢ arrives at (resp. leaves) node n. We use as generic
notation visit(t,n) to denote arrival or departure. We define three forms of con-
straints, detailed in the following. An originality of our approach is that we also
allow for parametric constraints.

Ordering Constraints. Ordering constraints constrain the order in which vis-
its should be made. They are of the form

ViSity (tl, n1) D visito (t2, nz).

Absolute Timing Constraints. Absolute timing constraints constrain the
visit of a node at an absolute time. They are of the form

visit(t,n) pad, with d € Q>o UP.

Relative Timing Constraints. Relative timing constraints constrain the time
between two visits. Let transfer(visity(t1,mn1), visita(to, ne)) = wvisita(te,ns) —
visity(t1,m1). Then relative timing constraints are of the form

transfer(visity (t1, n1), visita(t2, n2)) > d, with d € Q>o UP.
Finally, let us define wait(t,n) = transfer(arrival(t,n), departure(t,n)).

Ezxample 8 (schedule constraints). We formalize in the following some of the
informal examples from [17]. The fact that the blue train must start before
the green train can be encoded using departure(tpie, A) < departure(tgreen, A).
The fact that the red train starts before the green train approaches node 1
can be encoded using departure(tyeq, D) < arrival(tgreen,1). The fact that the
red train must reach A within 10 time units after entering the network can be
encoded using transfer(departure(t eq, D), arrival(treq, A)) < 10. The fact that
the green train must wait at node 3 for at least p time units can be encoded
using wait(tgreen, 3) > P

4.4 Constrained Railway System

Definition 6 (constrained railway system). A constrained railway system

is a tuple S = (G, T,SC) where

— G is a rail network graph,
- T is a set of trains over G, and
— 8C is a set of schedule constraints.

4.5 Objective

Train trajectory problem under uncertain speeds:

INPUT: a constrained railway system

PROBLEM: Synthesize segment durations and schedule constraints parame-
ters such that all train connections and schedule constraints are met.
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@ 2" < max(SegDur(seg;), TSegDur(seg;))

segfree; = T
Az" = max(SegDur(seg,), TSegDur(seg;))
arrivalfi
" 0
segfreej <— L

@@ ¥ < max(SegsDur(seg;, seg;), TSegsDur(seg;, seg;))

1" = max(SegsDur(seg;, seg;), TSegsDur(seg;, seg;))
departuref;
" 0
segfree; <— T

seg;) gt < max (SegDur(seg;), TSegDur(seg;))

Fig. 2. Modeling two consecutive segments seg, and seg; via node n;; for train ¢

5 Translation to Parametric Timed Automata

5.1 Overview of the Translation

Our translation is modular, in the sense that each train and each schedule con-
straint is translated into a different PTA. The system is made of the parallel
composition of these PTAs, synchronized using the actions modeling the arrival
of a train into a node, and the departure of a train from a node.

5.2 Railway Model and Trains

Due to the concurrent and real-time nature of the system, a simple discrete graph
with, e.g., a list of trains currently at each node, is not a suitable approach.
Instead, we choose a fully distributed approach, where each train evolves in its
own representation of the rail network graph, in a continuous manner. That is,
we define for each train k a PTA (with a single clock z¥), with the set of locations
being made of the segments and the node of the rail network graph.

The mutual exclusion in segments and nodes is ensured using global Boolean
variables, carefully tested and updated when attempting to enter, and when
exiting a segment or node. More precisely, the occupancy of each segment seg,
is encoded by a Boolean variable segfree; (denoting that the segment is free).

We give in Fig. 2 the encoding of two consecutive segments seg; and seg,; via
a node n;; for a given train ¢, = (T'SegDur, TSegsDur, C'). As expected, the
train can remain in a segment exactly max(SegDur(seg;), TSegDur(seg;)) time
units, and similarly in a location modeling the move of a segment to the next
one (here location “n;;”). A train can move to the node between two segments
only if the next segment (seg;) is free (“segfree; = T”), and the segment then
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becomes occupied (“segfree; <— L”). The actions “arm’valfj” and “departurefj”

are used to (potentially) synchronize with PTAs modeling schedule constraints.

If the node between seg; and seg; is a station in which the train may stop
(because it is part of its connection), then it is possible to stay longer in this
node: in that case, the “=" sign in the guard between locations “n;;” and “seg;”
in Fig.2 becomes “>", and the invariant of location “n;;” is removed.

Connections. A connection is easily encoded using a discrete integer-valued vari-
able: a node occurring at the nth position of the connection can only be visited
if n — 1 nodes were visited by this train in the past, which is easily modeled
by incrementing a local discrete integer. The initial location of the train PTA is
the node in which the train starts, and the final location is the node the train is
supposed to reach at the end of its connection.

5.3 Schedule Constraints

Ordering constraints are modeled exactly like connections, using discrete vari-
ables making sure the visits are performed in the specified order.

Each absolute timing constraint is modeled using a dedicated PTA, using a
(single, global) clock z,;s measuring the absolute time, i.e., never reset through-
out the PTAs. We give in Fig. 3a the PTA modeling constraint visit(t,n) < d.
The PTA simply constrains action visit! to occur only whenever guard “z,ps >
d” is satisfied (recall that “visit” stands for either “arrival” or “departure”).

Each relative timing constraint is modeled using a dedicated PTA, using
a local clock z measuring the relative time between different events. We give
in Fig.3b the PTA modeling the relative timing constraint transfer
(visit1(t1,mq), visita(ta,n2)) > d. This PTA constrains the time difference
between visitf;l and visitffg to be as specified by the constraint, using guard “z <
d”.

visitit

n x>d
0 —{ts)
@ Tabs DA d . ﬂ 240 &2 visitﬁfg @
visit]
(b) Modeling constraint

(a) Modeling constraint visit(t,n) >1d  transfer(visiti(t1,n1), visita(t2,n2)) > d

Fig. 3. Modeling schedule constraints

5.4 Solving the Train Trajectory Problem

Given A the PTA resulting of the parallel composition of the aforementioned
PTAs, the trajectory problem without timing parameters is satisfied if the final
location of all PTAs is reachable. That is, each train reached its final destination,
while all schedule constraints are satisfied.
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Q@ Q@ @
0 0o 0 00 0

Fig. 4. An example of a serial-parallel infrastructure, with Ng = Np = 3 [17]

In the presence of timing parameters, the set of parametric durations (mod-
eling uncertain segment durations) for which all train connections and schedule
constraints are met corresponds to the set of parameter valuations for which the
final location of all PTAs is reachable. This can be solved using reachability-
synthesis, i.e., the synthesis of timing parameters for which some PTA location
is reachable [4]. While reachability-emptiness is in general undecidable [4,6],
reachability-synthesis can be effectively solved under the assumption that there
is no loop in the rail network graph.

6 Experiments

As a proof of concept, we verify two constrained railway systems using the
IMITATOR parametric timed model checker [7]. IMITATOR takes as input net-
works of parametric timed automata extended with a number of features, such
as synchronization and discrete variables (used here). Experiments were con-
ducted on a Dell Precision 5570 with an Intel® Core™ i7-12700H with 32 GiB
memory running Linux Mint 21 Vanessa. We used IMITATOR 3.4-alpha “Cheese
Durian”, build feat/forall_actions/788£551. Models (including durations for
Fig.1) and results can be found at https://www.imitator.fr/static/ICFEM24
and https://doi.org/10.5281/zenodo.13789618.

Running Example. We first consider the running example in Fig. 1, without tim-
ing parameters. IMITATOR derives in 1.24s that the train trajectory problem
is satisfied, i.e., there exists a schedule such that all trains meet their connec-
tions and schedule constraints. Second, we add a parametric schedule constraint
visit(treqd, A) < pr, where pr € P. That is, pg denotes the upper bound such
that the red train reaches its destination. IMITATOR derives in 1.91s the set
of parameter valuations pr > 36, i.e., the red train cannot be faster than
36 time units. Third, we parametrize the minimum duration for segments 2
and 7, i.e., SegDur(segy) = p2 and SegDur(seg;) = pr, with pa, p; € P. IMITA-
TOR derives in 9.83s the set of parameter valuations (pr > ps + 28) V (pr >
p2 +p7r + 20) V (pr > 45). This gives the correct (sound and complete) condi-
tion over the segment durations and schedule constraints parameters such that
all train connections and schedule constraints are met. The fact that IMITATOR
derives symbolic (continuous) sets of timing parameters is a major advantage
over, e.g., SMT solvers, that would typically derive (non-necessarily complete)


https://www.imitator.fr/static/ICFEM24
https://doi.org/10.5281/zenodo.13789618

Tuning Trains Speed in Railway Scheduling 47

discrete sets of specific valuations. The symbolic and dense nature of our results
comes from the underlying symbolic techniques for parameter synthesis using
PTAs.

Scalability. To evaluate the scalability of our approach, we consider a serial-
parallel infrastructure, i.e., a network with Ng serially connected groups of Np
identical parallel tracks with a station. Connections only include [S, E], i.e.,
trains cannot stop at any station, and are free to use any path. This variety
of choices for each train obviously leads to an exponential blowup. We consider
various values for the number N7 of trains in the infrastructure, and for the
number of groups Ng and parallel tracks Np; as in [17], we fix Ng = Np. An
example with Ng = Np = 3 is given in Fig.4: Ng = 3 denotes the three groups
from S to E (from left to right), while Np = 3 denotes the three options (drawn
vertically) to traverse one group.

We reuse two scenarios from [17]: the “nop” scenario does not contain any
parametric duration, nor any schedule constraint; however, contrarily to [17], we
add one parametric absolute timing constraint: arrival(ty,., E) < J, with J € P
(in [17], J is a constant manually tuned). That is, we measure the end-to-end
time from the first train leaving S to the last train reaching E.

The “last” scenario in [17] additionally ensures that the last train takes less
than bnd time units between its departure and arrival. Again, we parametrize this
value instead of manually enumerating it, by adding the following relative timing
constraint: transfer(departure(tn,.,S), arrival(tn,, E)) < bnd, with bnd € P.

Note that a direct comparison with the experiments of [17] would probably
not make sense since ¢) the model is not the same (on the one hand, a more
involved dynamics is considered in [17] and, on the other hand, we allow for
more flexible durations and schedule constraints), ii) the segment durations are
not given in [17] and, most importantly, iii) we synthesize correct valuations
while [17] only wverifies the system for constant values.

We give in Table la the results for the “nop” scenario: we give from left to
right the numbers of groups (and parallel tracks), of trains, of PTAs in the trans-
lated model, of clocks, of parameters, of generated states during the analysis;
we finally give the synthesized value for J and the computation time. “T.O.”
denotes timeout after 1800s. Similarly, we give in Table 1b the results for the
“last” scenario with, as additional column, the synthesized bound “bnd” for the
relative timing constraint.

While the computation time is clearly exponential, which is not a surprise
considering the way we designed this scalability test, a positive outcome is that
we get interesting results for up to 4 trains or up to 4 groups of 4 parallel tracks,
a rather elaborate situation—especially in a parametric setting with unknown
timing bounds in the schedule constraints.

A difference with [17,20] is that we can automatically synthesize the bound
between the first train departure and the last train arrival, while they are man-
ually iterated in [17,20]. The second parameter (“bnd”) is simply tested in [17]
against 3 values (10, 102, 10%) without attempting to synthesize a tight valuation.
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Table 1. Experiments

(a) Scenario “nop’ (b) Scenario “last”
Ng|Nr||A| |X|||P| S|  J  t(s) Ns|/Nr |A| [X|[|P| |S|] J bnd t(s)
2111221 25/ 63, 0.01 21112]3]|2 25 63| 63| 0.01
2123 3]1| 238/ 75 0.08 212 3]4|2| 238 75 63 0.12
23|44 1] 2323 87| 2.68 2134 |5|2]| 2323 87 63 3.40
214 5|5]1(22450/ 99 96.02 24 |5]6]2|22450] 99| 63/113.41
31,221 51 92/ 0.01 311,232 51 92| 92| 0.02
312331 1237/104] 0.68 3123 |4]|2] 1052/104| 92| 0.91
313 4]4/|127385/116/137.61 313 |4|5]|227385/116| 92/157.78
314 -|-1|- - - T.O. 314 -|-1|- - - - T.O.
411,221 87121 0.03 41112 3|2 87/121/121| 0.04
412 3|31 3195133] 3.28 41213 4]2) 3195133/121, 4.64
413 - |-1|- - - T.O 413 |- -]- - - - T.O

7 Conclusion and Perspectives

We presented a formal model for verifying constrained railway systems in the
presence of unknown durations, not only to model segment traversal times, but
also to be used in relative and absolute schedule constraints. Our translation to
PTAs allowed us to verify benchmarks using IMITATOR, and to derive internal
segment durations and optimal values for schedule constraints.

We believe our framework, although simple, can serve as a preliminary basis
for more involved settings. Notably, modeling acceleration and deceleration
would be an interesting enhancement, possibly using piecewise discretization
to keep the linear nature of our framework. Taking energy consumption into
consideration would be another interesting future work, e.g., with an optimality
criterion, perhaps integrating our setting with other approaches such as [10,19].
In addition, tackling the exponential blowup could be partially achieved using
partial order or symmetry reductions, since these models are heavily symmetric.
Finally, we used here an ad hoc modeling language; integrating this framework
into standard domain-specific languages will be an interesting extension.
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colored trains drawn using KTEX TikZ in Fig. 1 are designed by cfr from stackexchange.
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Abstract. In 2009, Franck Cassez showed that the timed opacity prob-
lem, where an attacker can observe some actions with their timestamps
and attempts to deduce information, is undecidable for timed automata
(TAs). Moreover, he showed that the undecidability holds even for sub-
classes such as event-recording automata. In this article, we consider
the same definition of opacity for several other subclasses of TAs: with
restrictions on the number of clocks, of actions, on the nature of time, or
on a new subclass called observable event-recording automata. We show
that opacity can mostly be retrieved, except for one-action TAs and for
one-clock TAs with e-transitions, for which undecidability remains. We
then exhibit a new decidable subclass in which the number of observa-
tions made by the attacker is limited.

Keywords: timed automata - opacity - timing attacks

1 Introduction

The notion of opacity [18,24] concerns information leaks from a system to an
attacker; that is, it expresses the power of the attacker to deduce some secret
information based on some publicly observable behaviors. If an attacker observ-
ing a subset of the actions cannot deduce whether a given sequence of actions
has been performed, then the system is opaque. Time particularly influences the
deductive capabilities of the attacker. It has been shown in [22] that it is possi-
ble for models that are opaque when timing constraints are omitted, to become
non-opaque when those constraints are added to the models.

Timed automata (TAs) [2] are an extension of finite automata that can mea-
sure and react to the passage of time, extending traditional finite automata with
the ability to handle real-time constraints. They are equipped with a finite set
of clocks that can be reset and compared with integer constants, enabling the
modeling and verification of real-time systems.
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1.1 Related Work

There are several ways to define opacity problems in TAs, depending on the
power of the attacker. The common idea is to ensure that the attacker cannot
deduce from the observation of a run whether it was a private or a public run.
The attacker in [19] is able to observe a subset ¥, C ¥ of actions with their
timestamps. In this context, a timed word w is said to be opaque if there exists
a public run that produces the projection of w following 3, as an observed timed
word. In this configuration, one can consider the opacity problem consisting of
determining, knowing a TA A and a set of timed words, whether all words in
this set are opaque in 4. This problem has been shown to be undecidable for
TAs [19]. This notably relates to the undecidability of timed language inclusion
for TAs [2]. However, the undecidability holds in [19] even for the restricted class
of event-recording automata (ERAs) [3] (a subclass of TAs), for which language
inclusion is decidable. The aforementioned negative results leave hope only if the
definition or the setting is changed, which was done in four main lines of work.

First, in [26,27], the input model is simplified to real-time automata [20],
a restricted formalism compared to TAs. In this setting, (initial-state) opacity
becomes decidable [26,27]. In [28], Zhang studies labeled real-timed automata
(a subclass of labeled TAs); in this setting, state-based (at the initial time, the
current time, etc.) opacity is proved to be decidable by extending the observer
(that is, the classical powerset construction) from finite automata to labeled
real-timed automata.

Second, in [5], the authors consider a time-bounded notion of the opacity
of [19], where the attacker has to disclose the secret before an upper bound, using
a partial observability. This can be seen as a secrecy with an expiration date. In
addition, the analysis is carried over a time-bounded horizon. The authors prove
that this problem is decidable for TAs.

Third, in [11,12], the authors present an alternative definition to Cassez’s
opacity by studying execution-time opacity: the attacker has only access to the
execution time of the system, as opposed to Cassez’ partial observations with
some observable events (with their timestamps). In that case, most problems
become decidable (see [10] for a survey). Untimed control in this setting was
considered in [7], while [11,12] consider also parametric versions of the opacity
problems, in which timing parameters [4] can be used in order to make the system
execution-time opaque. Timed control in this setting was considered in [8].

Finally, a very recent paper (and written concurrently) [6] addresses opac-
ity in the one-clock setting, with additional variants regarding current-location
timed opacity and initial-location timed opacity. Our result regarding decidabil-
ity over discrete time (Theorem 7) matches their result (see Remark 4)—we
also provide exact complexity. Furthermore, our respective seemingly contradic-
tory results on one-clock TAs without e-transitions (we prove decidability, while
undecidability is proved in [6]) are in fact not contradictory due to the presence
of unobservable actions in [6] (see Remark 3).
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Regarding non-interference for TAs, some decidability results are proved in [9,
15,16], while control was considered in [17]. General security problems for TAs
are surveyed in [14].

1.2 Contributions

Considering the negative results from [19] there are mainly two directions: one
can consider more restrictive classes of automata, or one can limit the capabilities
of the attacker—we address both directions in this work.

We address here J-opacity (“there exists a pair of runs, one visiting and
one not visiting the private locations set, that cannot be distinguished”), weak
opacity (“for any run visiting the private locations set, there is another run not
visiting it and the two cannot be distinguished”) and full opacity (weak opacity,
but with the other direction holding as well).

Our attacker model is as follows: the attacker knows the TA modeling the
system and can observe (some) actions, but never gain access to the values of
the clocks, nor knows which locations are visited. Their goal is to deduce from
these observations whether a private location was visited.

Our set of contributions is threefold.

Inter-reducibility. Our first contribution is to prove that weak opacity and full
opacity are inter-reducible. This result, interesting per se, also allows us to con-
sider only one of both cases in the remainder of the paper.

Opacity in Subclasses of TAs. Throughout the second part of this paper (Sect. 5),
we consider the same attacker settings as in [19] but for natural subclasses of
TAs: first we deal with one-action TAs, then with one-clock TAs (both with and
without e-transitions—a mostly technical consideration which makes a differ-
ence in decidability), TAs over discrete time, and a new subclass which we call
observable ERAs. Precisely, we show that:

1. The problem of F-opacity is decidable for general TAs and thus for all sub-
classes of TAs we consider as well (Sect. 5.1).

2. The problems of weak and full opacity are both undecidable for TAs with
only one action (Sect.5.2) or two clocks (Sect. 5.3).

3. These two problems are also undecidable for TAs with a single clock, unless we
forbid e-transitions, in which case the problems become decidable (Sect. 5.3).

4. These two problems are decidable for unrestricted TAs over discrete time
(Sect. 5.4), as well as for observable ERAs (Sect. 5.5).

These results overall build on existing results from the literature. They how-
ever allow us to draw a clear border between decidability and undecidability.
Moreover, we provide the exact complexity for most of the decidable results,
which in some cases, complexify the proofs.

As a proof ingredient for Sect. 5.4, we also show that language inclusion is
decidable for TAs over discrete time (a rather unsurprising—yet interesting—
result, of which we could not find a proof in the literature).
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Reducing the Attacker Power. Then, in the third part (Sect.6), we introduce a
new approach in which we reduce the visibility of the attacker to a finite number
of actions occurring at the beginning of the run, on an unrestricted TA. This
models the case of an attacker with a limited attack budget, while consider-
ing the maximal class of TAs. This more elaborate result allows us to retrieve
decidability.

1.3 Outline

Section 2 recalls necessary preliminaries. Section3 defines the problems of
interest. Section4 proves inter-reducibility of weak and full opacity. Section 5
addresses opacity for subclasses of TAs, while Sect. 6 reduces the power of the
attacker to a finite set of observations. Section 7 concludes.

2 Preliminaries

We denote by N,Z,Q>0,R>o the sets of non-negative integers, integers, non-
negative rationals and non-negative reals, respectively. If a and b are two integers
with @ < b, the set {a,a+1,...,b—1,b} is denoted by [a;b].

We let T be the domain of the time, which will be either non-negative reals
R> (continuous-time semantics) or naturals N (discrete-time semantics). Unless
otherwise specified, we assume T = R>¢.

Clocks are real-valued variables that all evolve over time at the same rate.
Throughout this paper, we assume a set X = {z;,...,2g} of clocks. A clock
valuation is a function p : X — T, assigning a non-negative value to each clock.
We write 0 for the clock valuation assigning 0 to all clocks. Given a constant
d € T, u+ d denotes the valuation s.t. (u+ d)(z) = p(x) +d, for all z € X. If
R is a subset of X and p a clock valuation, we call reset of the clocks of R and
denote by [u]r the valuation s.t. for all clock z € X, [u]g(z) = 0 if x € R and
[4]r(x) = p(x) otherwise.

We assume i< € {<,<,=,>, >}. A constraint C' is a conjunction of inequal-
ities over X of the form z < d, with d € Z. Given C, we write p = C if the
expression obtained by replacing each z with u(z) in C evaluates to true.

2.1 Timed Automata

A TA is a finite automaton extended with a finite set of real-valued clocks. We
also add to the standard definition of TAs a special private locations set, which
is then used to define the subsequent opacity concepts.

Definition 1 (TA [2]). A TA A is a tuple A = (3, L, 4y, Lpriw, Ly, X, I, E),
where: 1) ¥ is a finite set of actions, 2) L is a finite set of locations, Ly € L is
the initial location, 8) Lyriy C L is a set of private locations, Ly C L is a set
of final locations, 4) X is a finite set of clocks, 5) I is the invariant, assigning
to every ¢ € L a constraint I(£) over X (called invariant), 6) E is a finite set
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Fig.1. A TA example

of edges e = ({,g,a,R,t") where {,{' € L are the source and target locations,
a € XU {e} (where € denotes an unobservable action), R C X is a set of clocks
to be reset, and g is a constraint over X (called guard).

Exzample 1. In Fig.1, we give an example of a TA with three locations ¢y, ¢4
and /5, three edges, two observable actions {a, b}, and one clock z. ¢y is the
initial location, ¢5 is the (unique) private location, and ¢; is the (unique) final
location. £y has an invariant “z < 3” and the edge from fy to £5 is labelled by
the unobservable action € and has a guard “z > 17.

Definition 2 (Semantics of a TA). Given a TA A = (Z,L,EO,LPW,,Lf,
X,I,E), the semantics of A is given by the timed transition system T4 =
(6 50,2 U {E} U R>0, —>), with

1. 6= {Eu GLXRO|M|:I }50 fo,
2. 5 C B xExBGUG xRxg x & consists of the discrete and (continuous)
delay transition relations:
(a) discrete transitions: ((€,p1), e, (€', 1)) € —, and we write (£, ) v (€', 1),
if (Gp), (' p') €6, e=(lg,a,R M) €EE, i =[ur, and p |= g.
(b) delay transitions: (¢, 1), d, (¢, p+d)) € —, and we write (£, p) A (4, p+d),
if d € R>g and Vd' € [O,d]7 p+d)e6.

Moreover we write (¢, M) (Z’ ") for a combination of a delay and discrete

transition if 3u” : (¢, u) — (€ WS ().

Given a TA A with semantics (&, 89, X U {e} UR>g, —), we refer to the ele-
ments of & as the configurations of A. A (finite) run of A is an alternating
sequence of configurations of A and pairs of delays and edges starting from
the initial configuration sy and ending in a final configuration (i.e. whose loca~
tion is final), of the form (¢, uo), (do, €o), (€1, 141), - - - (€n, i) for some n € N,
with ¢, € Ly and for ¢ = 0,1,...n — 1, ¢; ¢ Ly, e; € E, d; € R>p, and

(Csy ps) (duep) (it1, it1)- A path of Ais a prefix of a run ending with a config-

uration.

2.2 Region Automaton

We recall that the region automaton is obtained by quotienting the set of clock
valuations out by an equivalence relation ~ recalled below.
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Given a TA A and its set of clocks X, we define M : X — N the map that
associates to a clock z the greatest value to which the interpretations of z are
compared within the guards and invariants; if z appears in no constraint, we set
M(z) =0.

Given a € R, we write |a] and frac(«) respectively for the integral and
fractional parts of a.

Definition 3 (Equivalence relation ~ for valuations [2]). Let u, p’ be two
clock valuations (with values in R>o). We say that p and p' are equivalent,
denoted by p ~ (' when, for each x € X, either pu(z) > M(x) and p'(z) > M (z)
or the three following conditions hold:

1 (o)) = [(2)];

2. frac(u(z)) = 0 if and only if frac(p' (x)) = 0;

3. for each y € X, frac(u(z)) < frac(u(y)) if and only if frac(p' (z)) <
frac(p'(y)).

The equivalence relation is extended to the configurations of A: let s =
(¢,p) and s" = (¢, p’) be two configurations in A, then s ~ s’ if and only if £ =
¢ and p~ .

The equivalence class of a valuation p is denoted [u] and is called a clock
region, and the equivalence class of a configuration s = (¢, ) is denoted [s]
and called a region of A. Clock regions are denoted by the enumeration of the
constraints defining the equivalence class. Thus, values of a clock z that go
beyond M (z) are merged and described in the regions by “x > M (z)”.

The set of regions of A is denoted by R 4. These regions are of finite number:
this allows us to construct a finite “untimed” regular automaton, the region
automaton R.A 4. Locations of RA4 are regions of A, and the transitions of
RA 4 convey the reachable valuations associated with each configuration in A.

To formalize the construction, we need to transform discrete and time-
elapsing transitions of A into transitions between the regions of A. To do that, we
define a “time-successor” relation that corresponds to time-elapsing transitions.

Definition 4 (Time-successor relation [11]). Let r = (¢, [u]), 7" = (¢, [¢/]) €
Ra. We say that v’ is a time-successor of v when r # v/, £ = {' and for each
configuration (£, p) in r, there exists d € R>q such that (£, u+d) is in v’ and for
alld <d,(byp+d)erur.

A region r = (¢, [u]) is unbounded when, for all z in X and all p' € [u],
w(z) > M(z).

Definition 5 (Region automaton [2]). Given a TA A = (3, L, 4y, Ly,
Lf,X,I,E), the region automaton is the tuple RA4 = (¥r,R,r0,R¢, Er)
where 1) ¥g = X U{e}; 2) R = Ra; 8) ro = [s0]; 4) Ry is the set of regions
whose first component is a final location ¢y € Ly; 5) i) (discrete transitions) For
every r = ({,[p]) with € ¢ Ly, v’ = (', [']) € Ra and a € EU {e}:

(r,a,7") € Eg if 3p" € ), 3" € ('], (€, ") ¥ (€', 1"
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with e = (¢,g9,a,R,l") € E.
ii) (delay transitions) For every r = (¢,[p]) with £ ¢ Ly, 7' € Roa:

(r,e,r’") € Er if r’ is a time-successor of v or if r =1’ is unbounded.

As in TAs, a run of RA,4 is an alternating sequence of regions of R.A4
and actions starting from the initial region ry and ending in a final region, of
the form rg,ag,71,a1,...7p—1,an—1,7y for some n € N, with 7, € Ry and for
i€ [0;n—1], 7 ¢ Ry, and (r;,ai,7i+1) € Er. A path of RA4 is a prefix of
a run ending with a region and the trace of a path of RA4 is the sequence of
actions (e excluded) contained in this path.

3 Opacity Problems in Timed Automata

3.1 Timed Words, Private and Public Runs

Given a TA A and a run p = (4o, o), (do, €0), (b1, p41), - - -, (bny i) o0 A, we say
that Ly, is visited in p if there exists m € N such that ¢, € L,;,. We denote
by Visit?™"(A) the set of runs visiting Ly, and refer to them as private runs.
Conversely, we say that Ly, is avoided in p if the run p does not visit Ly,.

We denote the set of runs avoiding L, by Visit? " (A), referring to them as
public runs.

A timed word is a sequence of pairs made up of an action and a times-
tamp in R>o, with the timestamps being non-decreasing over the sequence.
We denote by TW*(X) the set of all finite timed words over the alpha-
bet ¥. A run p on a TA A defines a timed word: if p is of the form
(Lo, 120), (do, €0), (b1, 141), - -+, (b, piy) where for each ¢ € [O;n — 1], ¢, =
(&,gi7ai,Ri7€i+1) and a; € E U {e}, then it generates the timed word

(a]mzd)(ajuzd) ( Zd) where Jo < jl < s < Jm and

{jk | * G [0; m]]} ={ieo;n— 1]] | a; # €}. We denote by Tr(p) and call trace
of p the timed word generated by the run p and, by extension, given a set of
runs 2, we denote by Tr(f2) the set of the traces of runs in Q.

The set of timed words recognized by a TA A is the set of traces generated
by its runs, Tr(Visit?™™ (A) U Visit’™™ (A)) (thus a subset of (¥ x Rxq)*). To
shorten these notations, we use Tr(A) for the set of timed words recognized
by A, also called language of A. Similarly, we use TrP™™(A) = Tr( Visit?™ (A))
to denote the set of traces of private runs, and TrP"™ (A) = Tr( Visit?"" (A)) for
the set of traces of public runs.

In Cassez’s original definition [19], actions were partitioned into two sets,
depending on whether an attacker could observe them or not. For simplicity,
here we replaced all unobservable transition in 4 by e-transitions. Projecting
the sequence of actions in a run onto the observable actions, as done by Cassez,
is equivalent to replacing these actions by ¢ and taking the trace of the run.
Therefore, with respect to opacity, our model is equivalent to [19].
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3.2 Defining Timed Opacity

In this section, a definition of timed opacity based on the one from [19] is intro-
duced, with three variants inspired by [10]: existential, full and weak opacity. If
the attacker observes a set of runs of the system (i.e. observes their associated
traces), we do not want them to deduce whether L., was visited or not during
these observed runs. Opacity holds when the traces can be produced by both
private and public runs.

We are thus first interested in the existence of an opaque trace produced
by the TA, that is, a trace that cannot allow the attacker to decide whether it
was generated by a private or a public run. JF-opacity, which can be seen as the
weakest form of opacity, is useful to check if there is at least one opaque trace;
if not, the system cannot be made opaque by restraining the behaviors.

Definition 6 (3-opacity). A TA A is 3-opaque if TrP™ (A) N Tr™ (A) # 0.

J-opacity decision problem:
INpUT: A TA A
PRrROBLEM: Is A J-opaque?

Ideally and for a stronger security of the system, one can ask the system to be
opaque for all possible traces of the system: a TA A is fully opaque whenever for
any trace in Tr(.A), it is not possible to deduce whether the run that generated
this trace visited L,,;, or not. Sometimes, a weaker notion is sufficient to ensure
the required security in the system, i.e. when the compromising information
solely comes from the identification of the private runs.

Definition 7 (Full and weak opacity). A TA A is fully opaque if
TrP™ (A) = TrP"™(A). A TA A is weakly opaque if Tr?™(A) C TrP™ (A).

Full (resp. weak) opacity decision problem:
INpUT: A TA A
PROBLEM: Is A fully (resp. weakly) opaque?

Ezxample 2. The TA A depicted in Fig. 1 is 3-opaque and weakly opaque but not
fully opaque. Indeed,

TrP™(A) = {(a,71) - (a,m)(b;Tns1) |In ENAVi € [1,n], 7 < Tiq1 S 2A Ty > 1}

Tre™(A) = {(a,71) - (@, Tn) (b, Tn41) | n € NAVI € [1,n],7; < 7341 < 3}

This TA verifies Tr”"(A) C Tr"™(A) and Tr”"™(A) N TrP™ (A) # () since
(b,1.5) € Tr’™ (A).

4 Inter-reducibility of Weak and Full Opacity

In this section, we prove a new result relating weak and full opacity (Sect.4.2).
To this end, we first introduce in Sect. 4.1 a construction—that will also be useful
to prove our subsequent results in Sects. 5 and 6.
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4.1 Apm'v and Apub

First, we need a construction of two TAs A, and Ay, that recognize timed
words produced respectively by private and public runs of a given TA A.

The public runs TA Ay, is the easiest to build: it suffices to remove the
private locations from A to eliminate every private run in the system. (See
formal definition in Definition 11 in [13, Appendix A].)

The private runs TA A, is obtained by duplicating all locations and transi-
tions of A: one copy Ag corresponds to the paths that already visited the private
locations set, and the other copy Ag corresponds to the paths that did not (this
is a usual way to encode a Boolean, here “L,.;, was visited”, in the locations
of a TA). For each private location ¢, in A we copy all transitions leading
to the copy of £ppi, in Ag and redirect them to the copy of £y, in Ag. The
initial location is the one from Az and the final locations are the ones from Ag.
Hence all runs need to go from Ag to Ag before reaching a final location, which
requires visiting a private location.

Definition 8 (Private runs TA A,.;,). Let A = (E,L,EO,LPMU,Lf,X, I,
E) be a TA. The private runs TA Apyiy = (3, Ls W Lg,fg,Lg,.iv,L?,X,I/,E’)
1s defined as follows:

1. LS:{€S|€€L} cmdLg:{ESMGL}.

2. L? = {E? | £ € Ly} is the set of final locations, and L5, = {€5., | lpriv €
Lyriv} is the set of private locations;

3. I' is defined such as I'(¢%) = I'(¢%) = I(¢)

4. B/ = EsWEsgW Eg_ ¢ where Eg and Eg are the two disjoint copies of E
respectively associated with the sets of locations Lg and Lg, and Eg_,g is a

copy of the set of all transitions that go toward Lgm where the target location
@gm has been changed into Eim). More formally:

Es = {(€€797Q,R,‘€/?) |
Es={(°,g,a,R,("°) |
ES’—>S = {(‘esvgvaaR ‘€S )

s Ypriv

(¢,9,a,R, ') € E}
(€7gva7R7€/) E E}
| (f,g,a, Rvgpm'v) S E}

Example 3. We illustrate these constructions in Fig. 2 with A from Fig. 1.
The languages of A, and A, are respectively Tr? " (A) and TTW(A).

Remark 1. By a minor modification on Ay, one can build a TA A,emo that
recognizes exactly the same language as A and that stores in each location
whether the private locations set has been visited. To do so, we add the set {ch |

Ly € Ly} to the set of final locations in A,,;, and we remove each €§T.iv € LE,.W
from Lz in the same way as we did in A, the private locations of A,emo are
exactly those of Ay,. Notably, A is weakly (resp. fully) opaque if and only if

Aemo 1s weakly (resp. fully) opaque.
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(a) Apub

Fig. 2. A, and Apry with the example from Fig. 1

4.2 Inter-reducibility Proof

While the distinction between weak and full notions of opacity can lead to mean-
ingful changes [10], within our framework both associated problems are inter-
reducible.

Theorem 1. The weak opacity decision problem and the full opacity decision
problem are inter-reducible.

Proof. Let us first show that the full opacity decision problem reduces to the
weak opacity decision problem. Let A be a TA. In order to test whether A is fully
opaque, we can test both inclusions: Tr?™(A) C TrP™(A) and TrP™(A) D
TrP™™(A). The first inclusion can be decided directly by testing whether A is
weakly opaque. In order to test the second inclusion, we need to build a TA
B where private and public runs are inverted. To do so, we first build Ay
and Apry, and then define B as the TA constituted of Ap,yup and Apry as well
as two new locations £/, and £}, . The location £j is the initial location of B
and £}, is the only private location. For z € X, both £ and ¢}, have the
invariant = = 0, ensuring no time may elapse in those locations. From ¢, with a
transition labeled by e, one may reach either the initial location of Ay, (€§ ) or
Cyiy> from which an e-transition leads to the initial location of A,uy (£o). The
final locations of B are the final locations of Ay, and Appi,. The public runs
of B are the ones starting in £), going immediately to £5, and then following a
run of Ay, until a final location of A, is reached. As the initial transition is

labeled by &, we have Trm(l@) = Tr?""(A). Similarly, the private runs of B are
the ones starting in £;, going immediately to £, ;, followed immediately by going
to /5, and then follows a run of Apyp until a final location of A,y is reached.
As the two initial transitions are labeled by e, we have Tr?™(B) = Tr?™(A).
Hence, A is fully opaque if and only if A and B are weakly opaque.

Let us now show the converse reduction. Let A be a TA. We will define a TA

such that B is fully opaque if and only if A is weakly opaque. To do so, we want
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that TrP™(B) = Tr*"™(A) and Tr*™(B) = Tr’™(A) U Tr’""(A). Indeed, if
these equalities hold, Tr""™ (B) = TrP"™™ (B) would be equivalent to TrP"™ (A) =
TrP™ (A) U TrP™ (A) which holds if and only if TrP™™ (A) C TrP™(A). As for
the first reduction, B contains a copy of A,up and Ay, as well as two new
locations £; and £}, . The location £ is the initial location of B and £},,,, is the
only private location. For z € X, both £, and £, ;, have the invariant z = 0,
ensuring no time may elapse in those locations. From £, with a transition labeled
by €, one may reach either the initial location of A, (¢5) or €}i» from which
an e-transition leads either to Zg or to the initial location of A,y (¢o). The final
locations of B are the final locations of A, and Aypi,. The public runs of B
are the ones starting in £, going immediately to ¢y, and then following a run of
Apyp until a final location of A, is reached. As the initial transition is labeled

by ¢, we have TrP™(B) = TrP""(A). Similarly, the private runs of B are the
ones starting in £j,, going immediately to %rw followed immediately by going to
ég followed by a run of Ay, or to £y, followed by a run of Ay, until a final
location of A, is reached. As the two initial transitions are labeled by e, we
have Tr?™ (B) = Tr™ (A) U Tr?™(A). Hence, A is weakly opaque if and only
if B is fully opaque. O

5 Opacity Problems for Subclasses of Timed Automata

In this section, we consider the decidability status and complexities of the three
opacity problems presented in Sect. 3 for several subclasses of TAs: TAs with one
clock, TAs with one action, TAs under discrete time and observable ERAs. We
first show the decidability of the J-opacity problem in the general case. Then,
we focus on each class of TAs listed above to study weak and full opacity.

5.1 3-Opacity Problem

We show here (see [13, Appendix B]) that in general the J-opacity problem is
PSPACE-complete relying on the reachability problem in TAs, which is known
to be PSPACE-complete [2] as well, even for TAs with two clocks [21]. This
theorem considers multiple subclasses of TAs which we will describe more in
depth in future sections.

Theorem 2. Given a TA A, deciding the 3-opacity problem for A is PSPACE-
complete, even when restricting A to be a one-action TA, discrete-time TA, an
oERA', or a single clock TA where integers appearing in guards are given in
binary.

If the number of clocks in A is fized and integers appearing in guards are
given in unary, the 3-opacity problem is in NLOGSPACE.

1 See Sect. 5.5.
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5.2 Timed Automata with a Single Action

Recall that the universality problem consists in deciding whether a TA A accepts
the set of all timed words. In [25], it is shown that the class of one-action TAs is
one of the simplest cases for which the universality problem is undecidable among
TAs. Therefore, this gives the intuition (see [13, Appendix C] for proof) that
the weak and full opacity problems are undecidable as well for one-action TAs
(2] = 1).

Theorem 3. The full and weak opacity problems for TAs with one action are
undecidable.

Remark 2. The problems of execution-time opacity introduced in [10] are a
particular decidable subcase of these undecidable opacity problems with one-
action TAs. Indeed, the execution time is equivalent to a unique timestamp
associated with the last action of the system.

5.3 Timed Automata with a Single Clock

Following the same reasoning as in Sect. 5.2 (based on a different existing result
on TAs), we show that full opacity is undecidable for one-clock TAs.

Theorem 4. The full and weak opacity problems for one-clock TAs are unde-
cidable.

Proof. By reusing the same proof argument as in Theorem 3, using the fact that
universality for one-clock TAs (with e-transitions) is undecidable [1].

Without e-Transitions. We now prove that the weak and full opacity problems
become both decidable in the context of one-clock TAs (|X| = 1) without e-
transitions, relying on the fact that the language inclusion problem for one-
clock TAs without e-transitions is decidable [25].

By definition, a TA is weakly opaque if Tr?"(A) is included in Tr?™(A).
As TrP™(A) and TrP™ (A) are respectively recognized by Apriv and Ay, the
decidability of the weak opacity problem is directly obtained from the decidabil-
ity of the inclusion of two languages. Full opacity follows immediately, from the
bidirectional language inclusion.

Theorem 5. Full and weak opacity are decidable for one-clock TAs without e-
transitions.

Note however that, while decidable, this problem cannot be effectively
solved as the algorithm given by [25] is non-primitive recursive. Moreover, this
bound is tight as shown in [1]. Hence, by imitating the approach of Theorem 3,
one can reduce the language inclusion problem to the weak opacity, and thus
show the complexity is tight for weak and full opacity as well.
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Remark 3. This result might seem to contradict the result of a concurrently
written paper [6] that proves undecidability of (language-based) opacity for one-
clock TAs without e-transitions—but it does not. The discrepancy comes from
the fact that our attacker observes all actions (the unobservable actions are
encoded into e-transitions), while their setting considers unobservable actions—
which can act as e-transitions even in the absence of syntactic e-transitions.

Now, due to the undecidability of language universality for TAs with at
least two clocks [25, Theorem 21], we can prove the following with the same
construction as in Theorem 3:

Theorem 6. Full and weak opacity are undecidable for TAs with > 2 clocks.

5.4 Timed Automata over Discrete Time

In the general case, clocks are real-valued variables, with valuations thus rang-
ing over T = R>. TAs over discrete time however restrict the clock’s behavior
to valuations over T = N. Since the arguments used in [2] to prove the unde-
cidability of the universality problem in TAs rely on continuous time, this proof
cannot be used to establish undecidability of opacity over discrete time. In fact,
relying on the region automaton (defined in Sect.2.2) over discrete time and
classical results on finite regular automata, we show decidability of the opacity
problems as well as their exact complexity.

If p1, p' are two discrete clock valuations (i.e. with values in N), the definition
of ~ from Sect.2.2 can be simplified into: p ~ p’ if and only if for each z € X,
either p(z) = p/(z) or p(x) > M(z) and p/(z) > M (x).

In continuous time, for each run of the TA, there is a unique corresponding
run of the region automaton. In discrete time, thanks to the simplified form of
the definition of ~, the converse statement that a run of the region automaton
corresponds to a unique run of the TA nearly holds. Loss of information however
remains when every clock goes beyond their maximum constant, as time elapsing
is not measured beyond this point. In order to measure it, we add a letter ¢ (for
ticks) which occurs each time that an (integral) time unit passes in the region
automaton. This change can be operated directly on the TA A so that the
correspondence between paths of A and RA4 becomes immediate.

More precisely, we add a clock z and add self-loop transitions e; = (¢, (z =
1),t,{z},£) on each location ¢ € L of A. We also add the guard “z = 0” to each
discrete transition of A.

We illustrate the resulting TA on a simple example in Fig.3. We depict a
discrete-time TA A, its transformation by the procedure we just described and
finally its region automaton R.A4 (over discrete time).

With this construction, time information becomes superfluous in the TA as it
can be deduced from the number of ticks that were produced, which also appears
within a path of the region automaton. For instance, consider the run on the A
of Fig. 3a that remains four time units in ¢y before going to £;. The timed word
(a,4) on the original TA A becomes (¢, 1)(¢,2)(t,3)(t,4)(a,4) in our transformed
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Fig. 3. A discrete-time region automaton example

TA. The untimed word obtained in RA4 is tttta, which means that four ticks
occurred before the action a was produced. From this information, the original
timed word (a,4) can be reconstructed. In the rest of this subsection, we only
consider TAs enhanced with ticks. From the previous discussion, we have (see
[13, Appendix DJ):

Lemma 1. The language of a discrete-time TA and the language of its region
automaton are in bijection.

Thus, we show that the language inclusion problem for discrete-time TAs can
be reduced to its decidable equivalent for finite regular automata.

Proposition 1. Language inclusion in discrete-time TAs is EXPSPACE-
complete.

We can then adapt this result to the weak and full opacity problems in a
similar way as done in Sect. 5.3.

Theorem 7. Both weak and full opacity of discrete-time TAs are EXPSPACE-
complete.

Remark 4. Two very recent works [6,23] concurrently established decidability
of the opacity of TAs over discrete time. Our main distinct contribution lies in
establishing the exact complexity of the problems.

5.5 Observable Event-Recording Automata

In [19], the opacity problems were shown to be undecidable for Event-Recording
Automata (ERAs) [3], a subclass of TAs where every clock z is associated with
a specific event a, and x is reset on a transition if and only if this transition
is labeled by a,. Due to this, the valuations of clocks are entirely determined
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by the duration since the last occurrence of the associated events. One of the
main interest of ERAs is that they are determinizable [3]. This determinization
is carried out through the standard subset construction.

The undecidability result from [19] on ERAs required to make the events a,
unobservable. Hence, in our framework they would be replaced by e-transitions.
We define observable ERAs (0ERAs) as ERAs where the actions resetting the
clocks must be observable. This means that the information required for the
determinization now belongs to the trace that is observed.

Given an oERA A, we can thus build through the subset construction a TA
Det 4 such that any path p in A corresponds to a path pp in Det 4 with the
same trace and ending in a location labeled by the set of all the locations of A
that can be reached with a run that has the same trace as p. This information,
combined with the construction of Aemo (Remark 1) which stores in the state
of the TA whether the private location was visited or not, provides the following
result (see [13, Appendix EJ).

Theorem 8. Both weak and full opacity are PSPACE-complete for oERAs.

6 Opacity with Limited Attacker Budget

One of the causes for the undecidability of the opacity problems in [19] stems
from the unbounded memory the attacker might require to remember a run
of the TA. As a consequence, one can wonder whether the opacity problems
remain undecidable when the attacker performs only a finite number of obser-
vations. This models the case of an attacker with a limited attack budget. In
this section, we prove that the weak and full opacity problems become decidable
whenever, given N € N, the attacker only observes the first N actions (with
their timestamps). To the best of our knowledge, this is ) the second result of
the literature (after [12]) providing a decidable opacity result for the full class of
TAs over dense time, and 4i) the first result limiting the number of observations
of an attacker in the context of opacity for TAs.

For instance, if (a,1.2)(b,1.4)(b,1.5)(a, 2.1) is the trace of a public run of the
system, and N = 2, then the attacker only observes the trace (a,1.2)(b,1.4).
If (a,1.2)(b,1.4)(c,1.6) is the trace of a private run, the trace observed by the
attacker is (a,1.2)(b,1.4) again and the attacker cannot conclude whether a
private run occurred or not.

Formally, and in order to define new variants of opacity representing this
framework, given a TA A, we define a new TA (depicted in Fig. 4) which emulates
the behavior of A up to the Nth observation. This TA is an unfolding of A with
N +1 copies of A, where e-transitions are taken within each copy, and transitions
with an observable action lead to the next copy. A run ends when either a final
location or the final copy is reached.

Definition 9 (/N-observation unfolding of a TA). Let A = (E,L,ZO,LPM,,
Lf,X,LE) be a TA and let N € N. We call N-unfolding of A the TA
Unfold y (A) = (3, L', €3, L L} X, I, E') where

priv’
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Fig. 4. The construction of an N-observation unfolded TA

N . .
1. L' = | L* where the sets L* are N+1 disjoint copies of L where each location
i=0
¢ € L has been renamed ' € L': for 0 <i< N, L' ={¢' | L € L};
2. 13 € LY is the initial location;

N—1 _ _
3. L;m, = U L3, where L, are the copies within L* of the private locations
i=0
of A;
4. Ly = ('Uo Ly)u LN where L}, are the copies within L* of the final locations
1=
of A;

5. I'(0")y =1(f) forl € L and i < N extends I to each L;;
N

-1
6. E' = |J E'UE"™"!L is the set of transitions where, given 0 <i < N
i=0
- E'= {(fi’{—;’g7R’ elz) | (&é‘anga él) € E}7
B 2 {(Fra g RO | (Fasg, R) € B Aa € ),

Definition 10 (Opacity w.r.t. N observations). Let A be a TA and let
N € N. We say that A is weakly (resp. fully, 3-) opaque w.r.t. N observations
when Unfold 5 (A) is weakly (resp. fully, 3-) opaque.

We now state our main result. The proof is quite technical, so we only give
a high-level sketch. The full proof can be found in [13, Appendix F].

Theorem 9. The problem of deciding, given a TA A and N € N, whether A is
F-opaque w.r.t. N observations is PSPACE-complete.

The problems of weak or full opacity w.r.t. N observations are in 2-
EXPSPACE.

Proof (sketch). 3-opacity can be checked in PSPACEthrough the same approach
as Theorem 2. Indeed, even if N is given in binary, and thus Unfold 5 (A) is of
exponential size, the region automaton of Unfold 5 (A) remains simply exponen-
tial in the size of A. Hardness can be achieved with N = 0 with the same method
as Theorem 2.

Concerning the problems of weak and full opacity w.r.t. N observations, as
in Sect. 5.4, our goal is to rely on the region automaton to translate the opacity
problems from the TA to another problem on a finite automaton. However, there
is no immediate correspondence between runs of the TA and runs of the region
automaton, leading to a more involved proof.
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More precisely, given a TA A = (3, L, 4y, Lpriw, Ly, X,I,E) and N € N,
we build the unfolding of the TA A,,emo described in Remark 1. Recall that
A pmemo recognizes the same language as A but stores within the locations the
information whether L,,;, was visited. As such, A,,emo has the same opacity
properties as A, so we can consider Unfold  (Amemo) instead of Unfold 5 (A) to
study the opacity of A.

Additionally, we enrich this TA with ticks. In Sect. 5.4, we added a single
tick to the automaton which counted the time elapsed since the start of the run.
Here, the TA includes as well, for each 0 < k < N, a tick clock counting the
time elapsed since the kth observation. As multiple ticks may need to occur at
the same time, we develop the alphabet of ticks to describe the set of tick clocks
that need to be reset, i.e. the tick ¢y, . .} is produced by the TA if for every
0 < i < m, the k;th observation (or the start of the run if k; = 0) occurred an
integer number of time units before.

Note that the addition of these ticks immediately uses the assumption that
only N actions are observed.

In the new ticked automaton, we will establish a correspondence between
runs of the TA and paths of the region automaton, allowing us to reduce the
opacity problems to non-reachability of bad states in the determinization of the
region automaton, implying decidability.

Considering the complexity, the unfolding of the TA, assuming N is in binary,
is exponential in the number of states. Adding the ticks means adding an expo-
nential number of clocks as well. Hence the region automaton is doubly exponen-
tial in the original TA, and its determinization is triply exponential. Reachability
being in NLOGSPACEimplies the 2-EXPSPACEalgorithm.

A full proof with all technical details can be found in [13, Appendix F]. O

Table 1. Summary of Sect.5 (y/ = decidability, x = undecidability)

Subclass J-opacity |weak opacity full opacity

1z =1 X Theorem 3

|X| = 1 without e-transitions v/Theorem 5 (non-primitive recursive-c)
X|=1 +/Theorem 2 x Theorem 4

X|=2 (PSPACE-c) X Theorem 6

T=N /Theorem 7 (EXPSPACE-c)
oERAs v/ Theorem 8 (PSPACE-c)

7 Conclusion and Perspectives

In this paper, we addressed three definitions of opacity on subclasses of TAs, to
circumvent the undecidability from [19]. We first proved the inter-reducibility of
weak and full opacity. Then, while undecidability remains for one-action TAs,
we retrieve decidability for one-clock TAs without e-transitions, or over discrete
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time, or for observable ERAs. Our result for one-clock TAs without e-transitions
is tight, since we showed that increasing the number of clocks or adding e-
transitions leads to undecidability. Finally, we studied the case of an attacker
with an observational power with a limited budget, i.e. that can only perform a
finite set of observations. We proved this latter case to be decidable on the full
TA formalism. We summarize the results from Sect. 5 in Table 1.

Future Work. Perspectives include being able to build a controller to ensure
a TA is opaque, as well as investigating parametric versions of these problems,
where timing constants considered as parameters (& la [4]) can be tuned to ensure
opacity.

Finally, our result in Sect. 6 considers an attacker with a fixed attack budget;
an interesting future work would be to derive a maximum attack budget such
that the system remains opaque.
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Abstract. Clock-dependent probabilistic timed automata extend prob-
abilistic timed automata by letting the probabilities of discrete transi-
tions depend on the exact values of clock variables. The probabilistic
reachability problem for clock-dependent probabilistic timed automata
has been shown previously to be undecidable. We consider a subclass
with one clock and in which nondeterministic choice is made in a mem-
oryless fashion, i.e., nondeterministic choice depends the current state
only. We show that, for this subclass, the reachability problem can be
solved by constructing and analysing a finite-state parametric Markov
chain using established methods.

Keywords: Probabilistic model checking - Timed automata -
Parametric Markov chains

1 Introduction

The development of complex systems can benefit from automatic verification
techniques such as model checking. In a number of application contexts, it is
important to reason not just about qualitative aspects of the system (such as
reaching an error state, or completing a task) but also quantitative aspects (such
as the likelihood of reaching an error state, or whether a task can be completed
within a certain deadline). In this paper, we consider probabilistic timed systems,
for which the modelling of probabilities and timing aspects of system behaviours
is key to their verification. We focus on probabilistic timed automata (PTAs)
[11,19,24], which combine aspects of timed automata [2] (clock variables, con-
straints on clocks, resets of clocks) and Markov decision processes (MDPs) [25]
(transitions are made using a combination of nondeterministic and probabilis-
tic choice), and which have been used to model a number of systems, ranging
from network protocols to scheduling problems with uncertainty. Two key char-
acteristics of PTAs are that (1) probabilistic choice is made over the discrete
components of the model, rather than over time durations or clock values, and
(2) the actual probability values used for probabilistic choices depend only on
whether clock values satisfy or not certain clock constraints. Characteristic (2)
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has been generalised in the formalism of clock-dependent probabilistic timed
automata (cdPTAs) [26], in which relationships between clock values and proba-
bilities used for probabilistic choice can be expressed. Hence cdPTAs are appro-
priate for modelling systems in which the likelihood of certain events changes
over time. For example, for a digital system interacting with humans, the prob-
ability of human error may increase over time [10]; in a smart farming system,
the greater the time taken to fill a trailer with grain, the higher the probability
that a human supervisor regards the trailer to be sufficiently full, but also the
higher the probability that the grain will be subsequently ruined by rain during
transit (this example adopts elements from [22]). Previous work has showed that
the reachability problem for cdPTAs, which asks whether there exists a resolu-
tion of nondeterministic choice such that a set of target states is reached with
probability at least A € (0,1], is undecidable, although upper and lower bounds
on reachability probabilities can be computed by analysis of an approximate
finite-state MDP [26].

Another approach to the reachability problem for cdPTAs is to consider the
construction of a finite-state model that represents exactly the behaviour of a
cdPTA belonging to a certain subclass. An exact finite-state construction for the
subclass of cdPTAs that feature one clock variable and a requirement specifying
that the clock must be reset to 0 between probabilistic choices that depend on
the exact value of the clock, thereby guaranteeing the independence of those
probabilistic choices, has been presented in [27]. The formalism used for that
construction is interval Markov chains [13], in which intervals on probabilities
are given for each transition, representing uncertainty with regard to actual
probability with which transitions are made. The aforementioned requirement
on the independence of non-trivial clock dependencies, as used in [27], does
not allow a key characteristic of cdPTAs to be employed, namely the ability to
express situations of trade-offs between successive probabilistic choices.

This key characteristic is inherent to the cdPTA of Fig. 1, which models the
simple smart farming system described above. We adopt the usual conventions
for illustrating cdPTAs: locations are drawn as circles, probability distributions
are indicated by black boxes and the boxes’ outgoing edges, constraints on the
unique clock z label locations (invariant conditions) and edges from locations
to black boxes (guard conditions enabling the choice of probability distribu-
tions), and expressions determining probabilities of transitions are denoted by
grey boxes labelling edges from black boxes to locations (such edges may also
feature a clock reset denoted by {z}). The initial location F represents the trailer
being filled with grain, location T represents the trailer being in transit, loca-
tion S represents the trailer being under shelter at its destination, and location
X represents the failure of the system (either the human supervisor regards the
trailer to be insufficiently full or the grain is ruined by rain). The behaviour of
the cdPTA takes the following form. On entry to a location, a nondeterministic
choice is made regarding the amount of time that elapses while remaining in
that location. The value of the clock x increases by the chosen time delay. The
choice regarding the amount of time to elapse is constrained by the invariant
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Fig. 1. A 1lc-cdPTA modelling a simple task with a trade-off.

condition of the location. After the chosen time delay, if the current value of the
clock satisfies the guard condition of one of the location’s outgoing edges, then
that edge can be chosen nondeterministically. A probabilistic choice is then made
according to the probability distribution that corresponds to the black box that
is the target of the chosen edge, where the probabilities regarding the subsequent
edge to traverse can depend on the current value of the clock. Traversing edges
and black boxes is instantaneous. Observe that in the cdPTA of Fig. 1, when
taking the transition to the right of the initial location F, the probability of
making a transition to location T increases as the value of the clock x increases
(the greater the time dedicated to filling the trailer with grain, the higher the
probability that the human supervisor is satisfied); however the probability of
subsequently making a transition to location S decreases as the value of the clock
x increases (the weather forecast indicates that the probability of the arrival of
rain increases until two time units have elapsed). Hence, the maximum proba-
bility of reaching location S from F, passing through T, is obtained by letting ¢
units of time elapse in F, then letting no time elapse in location T: we require
a framework that takes into account the interdependence of the probability of
both transitions along the path from F to S through T to reason about the
value of t that attains this maximum probability. As a final note, in order to
reason about the overall optimal behaviour of the cdPTA, we must also take
into account the lowermost edge from location F, which corresponds to filling
the trailer completely then waiting until the peak of the storm has passed (after
four time units), after which the probability of ruining the grain in transit is 19—0
regardless of the exact time delay chosen.

In this paper, as in [27], we construct an exact, finite-state abstraction of
a ¢cdPTA with one clock (abbreviated as 1c-cdPTA). However, in contrast to
[27], we do not impose the restriction that the clock must be reset between the
transitions whose probability depends on the exact value of the clock. We use
parametric Markov chains (pMCs) [9,20] as a formalism for the exact, finite-
state abstraction. As in interval Markov chains, pMCs represent uncertainty
with regard to transition probabilities; however they also allow the expression
of dependencies between transition probabilities of different states. In order to
obtain a finite-state pMC, we require that the nondeterministic choices made in
the 1c-cdPTA are memoryless and finitely-uniform: the underlying infinite state
space of the 1c-cdPTA is partitioned into a finite number of equivalence classes
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(using the standard notion of regions from the literature of timed automata with
one clock [21]), and nondeterministic choices depend on the equivalence class of
the current state (rather than on the history of states visited). Our approach is
inspired by the precedent of [15] in the context of the use of pMCs for finite-
state control of partially-observable MDPs: in both approaches, nondeterministic
choices are represented by parameter values, and an instantiation of parameter
values corresponds to a finite-state strategy for resolving nondeterministic choice.
A novelty of this paper is to establish a relationship between the clock values
resulting from the elapse of time and parameters of the pMC. This relationship
requires comparison between parameters: in the example of Fig. 1, if the value
of the clock z is equal to v when location F is exited, then the value of z when
location T is exited must be at least v; this relationship between clock values is
carried over to the parameters of the pMC in order to represent faithfully the lc-
c¢dPTA. As a consequence of the pMC construction and the results on pMCs of
[16], establishing whether there exists a memoryless and finitely-uniform strategy
for resolving nondeterministic choice of a lc-cdPTA such that a set of target
states is reached with a probability at least some threshold A € (0,1] is in ETR
(the complexity class of problems with a polynomial-time many-one reduction
to deciding membership in the existential theory of the reals).

Related work. Apart from the references given above, we also mention the fol-
lowing related work. A notion of uniformity of strategies based on a finite parti-
tioning of the state space of a timed automaton game has been presented in [7],
and inspired partly our notion of finitely-uniform strategies. Stochastic timed
automata [5] and 13-player stochastic timed games [1,6] are variants of PTAs
with probabilistic choice over time delays (hence not exhibiting characteristic
(1) of PTAs described above).

2 Preliminaries

We use R to denote the set of real numbers, R> to denote the set of non-negative
real numbers, Q to denote the set of rational numbers, and N to denote the set
of natural numbers. A (discrete) probability distribution over a countable set @
is a function p: Q — [0,1] such that >, p(q) = 1. Let Dist(Q) be the set of
distributions over Q. For a (possibly uncountable) set @ and a function p: Q —
[0,1], we define support(i) = {q € Q| 1(g) > 0}. Then, for an uncountable set
Q, we define Dist(Q) to be the set of functions u : @ — [0, 1] such that support(u)
is a countable set and p restricted to support(u) is a distribution. Given a binary
function f: @ x @ — [0,1] and element ¢ € @, we denote by f(q,-) : @ — [0,1]
the unary function such that f(q,-)(¢’) = f(q,¢’) for each ¢’ € Q.

Let V be a finite set of real-valued variables called parameters. We use Q[V]
to denote the set of rational polynomials over V with coefficients in Q. An
instantiation of V is a function v : V' — R associating a real value with each
parameter in V. Given f € Q[V] and instantiation u of V, we denote by f[u] the
value obtained from f by substituting each p € V' by u(p). Given the function
g : @ — Q[V] and an instantiation u of V, we denote by g[u] : @ — R the
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function such that g[u](q) = g(q)[u] for each ¢ € Q. An instantiation u of V is
distribution-inducing for g if glu] € Dist(Q).

Markov Chains and Markov Decision Processes. A Markov chain (MC)
C is a tuple (S,5,P) where S is a set of states with initial state 5§ € S, and
P: S xS —[0,1] is a transition probability function such that P(s,-) € Dist(S)
for each state s € S. An (infinite) path of MC C is an infinite sequence sgs7 - - -
of states such that P(s;, s;41) > 0 for all ¢ > 0. Given a path r = sgs1 -+ and
i > 0, we let r(i) = s; be the (i + 1)-th state along r. The set of paths of C
starting in initial state § is denoted by Paths®. Similarly, a finite path of C is a
finite sequence r = s¢s1 - - - 8, such that P(s;, s;41) > 0 for all 0 < i < n. We let
(i) = s; for 0 < i < n be the (i+1)-th state along r, and let PathsC be the set of
finite paths of C starting in initial state 5. Given a finite path r = sgs1 - Sp_1Sn
in Paths®, let Pré(r) = P(s0,51) ... - P(sn_1,5n). We can extend uniquely Pr¢
to obtain a probability measure Pr¢ over Paths (for more details, see [4]). Given
T C S, we define OT = {r € Paths®(5) | 3i € N.r(i) € T} as the set of infinite
paths of C such that some state of T is visited along the path. Hence Pr®(OT)
denotes the probability that a state in T is visited from the initial state in C.

Let R € S x S be an equivalence relation on S, and let S/z be the set
of equivalence classes of R. Given C' € S/, we let P(s,C) = >, .~ P(s,s).
An equivalence R is a T-preserving probabilistic bisimulation on C if (s,s') € R
implies that (1) s € T if and only if s’ € T, and (2) P(s,C) = P(s’,C) for each
C € S/r [23]. Let C; = (S1,51,P1) and Co = (52, 32, P2) be two DTMCs such
that S1 NSy = 0, and let C; W o = (S1 U S2 U5, 5,P), where (1) § ¢ 51U Ss,
(2) P(s,:) =Py(s,-) if s € S; and P(s,-) = Py(s,-) otherwise and (3) P(5,5,) =
A and P(5,53) = 1 — X for some arbitrarily chosen A € (0,1). For T'C S and a
T-preserving probabilistic bisimulation R on C; & Cy such that (31, 52) € R, we
have Pr¢ (OT) = Pr (OT) [3].

A Markov decision process (MDP) M = (S, 5, A, A) comprises a set of states
S with an initial state § € S, a set of actions A, and a probabilistic transition
function A : S x A — Dist(S)U{L}. The symbol L represents the unavailability
of an action in a state, i.e., A(s,a) = L signifies that action a € A is not
available in state s € S. For each state s € S, let A(s) ={a € A| A(s,a) # L},
and assume that A(s) # (), i.e., there is at least one available action in each
state. Transitions from state to state of an MDP are performed in two steps: if
the current state is s, the first step concerns a nondeterministic selection of an
action a € A(s); the second step comprises a probabilistic choice, made according
to the distribution A(s,a), as to which state to make the transition (that is, a
transition to a state s’ € S is made with probability A(s,a)(s’)). In general, the
sets of states and actions can be uncountable. We say that an MDP is finite if S
and A are finite sets. A(n infinite) path of an MDP M is a sequence spagsias - - -
such that a; € A(s;) and A(s;, a;)(s;+1) > 0 for all ¢ > 0. Given an infinite path
r = spapsiay--- and ¢ > 0, we let r(i) = s; be the (i + 1)-th state along r.
Let Paths™ be the set of infinite paths of M starting in the initial state .
A finite path is a sequence r = spagsiay - - an—18, such that a; € A(s;) and



cdPTAs with One Clock and No Memory 75

A(s4,a:)(si41) > 0 for all 0 < i < n. Let last(r) = s, denote the final state of
r. For a € A(s,) and s € S such that A(s,,a)(s) > 0, we use ras to denote the
finite path spagsiai - - - ay_15nas. Let Pathsf/‘ be the set of finite paths of the
MDP M starting in the initial state 3.

A strategy of M is a function o : Paths™' — (Jscs Dist(A(s)) such that
o(r) € Dist(A(last(r))) and |support(c(r))| is finite, for all 7 € Paths. Let
XM be the set of strategies of the MDP M. We say that infinite path r =
Soapsiay - -+ is generated by o if o(spagsial---a;—18;)(a;) > 0 for all i« € N.
Let Paths® be the set of paths generated by o. The set Paths? of finite paths
generated by o is defined similarly. Given a strategy o € XM, we can define a
countably infinite-state MC C?, called the induced MC of o, that corresponds
to the behaviour of o: we let C7 = (Paths],3,P?), where, for r,7’ € Paths],
we have P7(r,r") = o(r)(a) - A(last(r),a)(s) if ¥ = ras and a € A(last(r)),
and P?(r, ') = 0 otherwise. For simplicity, we write Pr rather than Pr¢" for
the probability measure associated with C?. Given T C S, and given the 1-to-1
relationship between (finite and infinite) paths of M generated by o and paths
of C7, we write OT to denote the set of paths of C? that correspond to T being
visited in M; formally OT = {r € Paths®” | 3i € N.last(r(i)) € T}. Hence
Pr?(<OT') denotes the probability of reaching the set 7' in M while following the
strategy o. We consider whether there exists a strategy belonging to a particular
set of strategies such that the probability of reaching a certain set of states is
at least some threshold. More precisely, given MDP M = (5,5, A, A), strategy
set X' C XM target set T C S and threshold A\ € (0,1], the (emistential,
lower-bounded, non-strict) reachability problem for M, X', T and X is to decide
whether there exists a strategy o € X’ such that Pr?(OT) > A.

Parametric Markov Chains. A parametric Markov chain (pMC) D = (S, 3,V,
A) comprises a finite set of states S, initial state 5 € S, a finite set of parameters
V and a parametric transition function A : S x S — Q[V]. When considering a
pMC D = (S,5,V, A), we consider only instantations of V' that are distribution-
inducing for A(s,-) for all states s € S. Let Instp be the set of instantiations
for D, and we consider only pMCs for which Instp # (. Given instantiation
u € Instp, we can observe that (5,5, Afu]) is an MC, which we denote by Dlu].
We consider the following feasibility problem with respect to reachability for
pMCs. Given a pMC D = (S, 35,V, A), set of instantiations U C Instp, target set
T C S and threshold A € (0, 1], the feasibility problem for D, U, T and X is to
decide whether there exists an instantiation u € U such that Pro™ (o) > A,

3 Clock-Dependent Probabilistic Timed Automata

We now recall the definition of clock-dependent probabilistic timed automata
[26], focussing on the subclass with one clock variable [27]. This clock variable
will be denoted by z. A clock valuation is a value v € R>q, interpreted as the
current value of clock z. Following the usual notational conventions for modelling
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formalisms based on timed automata, we use the powerset notation 2{#} to refer
to the set {{z}, 0}, which we will use in the sequel to indicate whether the clock
is reset to 0 (denoted by {z}) or retains its current value (denoted by (). A
clock constraint is a conjunction of atomic formulae of the form z ~ ¢, where
~€ {<,<,>,>} and ¢ € N. The set of clock constraints is defined as ¥. A clock
valuation v satisfies a clock constraint v, denoted by v = 1, if ¢ resolves to
true when substituting each occurrence of clock x with v.

Dependencies between clock values and transition probabilities will be
expressed using rational polynomials over x. We refer to functions of the form
g: Q — Q[{z}] as templates on @, and use Templates(Q) to refer to the set of
such functions. Given a clock constraint ¢ € ¥, a template g € Templates(Q) is
a distribution template with respect to 1 if v is distribution-inducing for g for all
v € R> such that v = 9.

A clock-dependent probabilistic timed automaton with one-clock (lc-cdPTA)
A = (L, 1, inv, prob) comprises the following components:

— a finite set L of locations with an initial location | € L;

— a function inv : L — V¥ associating an invariant condition with each location;

— a set prob C L x ¥ X Templates(Q{m} x L) of probabilistic edges, containing
triples of the form (I, g, p), where [ is the source location of the probabilistic
edge, g is a clock constraint called the guard of the probabilistic edge, and p
is a distribution template with respect to g A inv(l).

Given a probabilistic edge p € prob, we write src(p), grd(p) and tpl(p) for the
source location, guard and distribution template of p, respectively.

The behaviour of a lc-cdPTA takes a similar form to that of a standard
(one-clock) probabilistic timed automaton [11,17,19]. A state of a lc-cdPTA
is a pair comprising a location and a clock valuation satisfying the location’s
invariant condition, i.e., ([,v) € L x R>g such that v |= inv(l). From a state
(I,v), a nondeterministically-chosen amount of time ¢ € R>¢ elapses, increasing
the value of the clock to © = v+t. The current location’s invariant condition
inv(l) must remain satisfied continuously while time passes. A probabilistic edge
(I',g,p) € prob can then be chosen from state (I,9) if I = I’ and the clock
constraint g is satisfied by ©. The choice of which such probabilistic edge to
take is nondeterministic. Once a probabilistic edge (', g, o) has been chosen, a
successor location, and whether to reset the clock to 0, is chosen probabilistically
according to the distribution p[0]. For example, in the case of the lc-cdPTA
of Fig.1, from state (F,0) (i.e., the location is F and the value of clock z is
equal to 0), a nondeterministic choice is made as to the amount of time to
elapse and which probabilistic edge to select. Consider the case in which delay
t € (1,2) elapses, increasing the value of z to © = 0+¢ = t, following which the
uppermost probabilistic edge leaving F is traversed. The resulting state is (T, ?)
with probability ¢ — 1, and (X, ) with probability 2 — .

In order the simplify the definition of the semantics of 1c-cdPTAs, we make
a number of standard assumptions (see [27] for more details). Firstly, invariant
conditions bound the clock from above only: for each [ € L, the invariant con-
dition inv(l) is © < ¢ for some ¢ € N, or x < ¢ for some ¢ € N\ {0}. Secondly,
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the guard of some probabilistic edge can always be satisfied, either in the cur-
rent state or by letting time elapse. This assumption is expressed by specifying
that the guard of some probabilistic edge is satisfied immediately prior to the
invariant condition becoming unsatisfied: formally, for each [ € L, there exists
p € prob with src(p) = I and where grd(p) is such that (1) if inv(l) = (z < ¢)
then ¢ = grd(p) (viewing c as a clock valuation), and (2) if inv(l) = (z < ¢) then
c—¢ = grd(p) for all € € (0,1).! Thirdly, target states resulting from probabilis-
tic edges satisfy their invariants: for each p € prob, I € L and v € R>¢ such that
v =g, if tpl(p)[v](D,1) > 0 then v = inv(l).

The semantics of the lc-cdPTA A = (LI, inv, prob) is the MDP [A] =
(S,3,A, A) where:

- S={(Lv) € LxRso | vk i)}

- 8= (iv O)a

— A =R>¢ x prob;

— for (l,v) € S, © € Rxg and p € prob such that (1) o > v, (2) ¥ = grd(p)

and (3) w = inv(l) for all v < w < o, then we let A((l,v), (,p)) be the
distribution such that, for (I',v’) € S:

tP:EP;ﬂE{x})Z ) +tpl(p)[0)(0, 1) %i v =0 :8

- ;. tpl(p)[o ifv'=0>

A((L,v), (@,p))(I0') = t&(p)m({x} " v 0
0 otherwise;

if conditions (1), (2) and (3) are not satisfied, we let A((I,v), (7,p)) = L.

The summation in the first case of the definition of A reflects the fact that, for
v’ =0 = 0, for obtaining v’ from v, it is immaterial whether the clock is reset.

In the sequel, we consider reachability of a certain set of locations in the
lc-cdPTA. Let F' C L be a set of locations, and let Tp = {(l,v) € S|l € F'} be
the set of states of [A] that have their location component in F. Hence, given
a strategy o of [A], Pr?(OTF) denotes the probability of reaching the set of
locations F' under the strategy o.

4 Translation from 1c-cdPTAs to pMCs

Memoryless Strategies for 1c-cdPTAs. Our notion of memoryless strate-
gies for 1c-cdPTAs, which we now present, consists of two aspects: firstly, such
strategies depend only on the current state of the lc-cdPTA; secondly, there
exists a finite partition of the state space of the 1c-cdPTA such that, for each
class of the partition, strategies behave uniformly over all states in the class. In
order to define this partition, we use the notion of regions? for timed automata

! Note that the interval (0,1) in condition (2) can be replaced by (0,\) for any
A € (0,1), because either all valuations in (¢ — 1, ¢) satisfy grd(p) or none do.

2 Note that sets of instantiations are often referred to as regions in the pMC literature
(for example, in [14]). Instead, in this paper, we adopt the notion of regions from
the timed automata literature.
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with one clock [21]. Then the behaviour (in terms of which clock value to let
time elapse to, and which probabilistic edge to take) of a memoryless strategy is
described as being the same for all states of each of the aforementioned regions.
The presence of such uniformity means that we are able to define a memoryless
strategy of a 1-cdPTA using a finite framework.

Let A = (L,l,inv, prob) be a lc-cdPTA. Let Cst(A) be the set of con-
stants that are used in the guards of probabilistic edges and invariants
of A, and let B = Cst(A) U {0}. We write B = {bo,b1,...,br}, where
0 = by < by < ... < bg. The set B defines the set of intervals Iy =
{[bo, bol, (bo, b1), [b1,b1],- - - , [bk, bi], [bK, o0)}, i.e., Ip is a partition of R>¢ into
subintervals with endpoints in B U {oc}, and where each element of B has a
corresponding closed interval in Zy comprising only that element. We define a
total order on Zp in the following way: [bo,bo] < (bg,b1) < [b1,b1] < -+ <
[bk,bk] < [bg,00). Let ¥ be a guard of a probabilistic edge or an invari-
ant of A. By definition, for each B € Zp, either B C {v € R>¢ | v = ¢} or
Bn{veRsq| v} =0 (either all valuations in B satisfy ¢ or none do). We
write B |= 1 in the case of B C {v € Rxg | v = ¢}

The set of regions of A is defined as Regs = {(I,B) € L x Iy | B |= inv(l)}.
In the sequel, we will refer to a state (I, v) of [.A] as belonging to a region (I', B)
if ] =1 and v € B. Given a region (I, B), the set of region successor actions
of (I,B), denoted by RegA(l, B), is defined as the set of pairs where the first
element of the pair is an interval B that can be obtained from B by letting
time elapse (provided that B does not exceed the upper bound enforced by the
invariant condition), and where the second element is a probabilistic edge with

source location [ and guard which is satisfied by B. Formally, we let:
RegA(l, B) = {(B,p) € T x prob | src(p) =l A B < BA B = (grd(p) A inw(l))}.

We now define, in two steps, our notion of memoryless strategies for lc-
cdPTAs in two steps. First, we introduce region-based controllers which, given
a current region of the lc-cdPTA, specify a distribution over region successor
actions, and, for each such action, also determine exactly which clock valuation is
attained by letting time elapse. An action mapping act : Regs — Dist(Zg X prob)
for A is a function such that, for each (I, B) € Regs and (B,p) € Zg x prob, if
act(l, B)(B,p) > 0 then (B,p) € RegA(l, B). A time-elapse valuation mapping
val : RegsxZg x prob — R>¢ for A is a function such that the following conditions
are satisfied for each (I, B) € Regs and (B, p) € Zp x prob:

— val((l, B), B,p) € B (the time-elapse valuation obtained from val belongs to
time-elapse interval B);
— for each I’ € L and (B',p’) € Iy x prob, if:

e tpl(p)[val((l, B), B,p)](,1') > 0 (the probability of passing from (I, B)
to location I’ using region successor action (B, p) while not resetting the
clock is positive), and

e act(l, B)(B,p) > 0 and act(l’, B)(B’,p’) > 0 (act specifies that (B,p) can

be chosen from (I, B) and (B’,p’) can be chosen from (I’, B)),
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then val((l, B), B,p) < val((I', B), B',p’) (val cannot specify that the clock’s
value decreases between successive transitions).

Then a region-based controller for A is defined as a pair (act, val) comprising an
action mapping act and a time-elapse valuation mapping val.

We can now use a region-based controller (act,val) to define an associated
strategy o®“4°9! for the 1c-cdPTA A. Given a clock valuation v € Rxq, we denote
by (v) the unique interval in Zp that contains v. Let r € PathsEAﬂ be a finite
path of [A] and let (7,p) € R>g x prob. We will use (I,v) to denote last(r).
First note from the definition of the probabilistic transition function A of [A]
and RegA, if A(0,p) # L, then ({0)),p) € RegA(l, B). Then we let:

o5t () 5. p) — { act(l, (o)) (2D, ) if & = val(1, {0]). (7). p);

0 otherwise.

Note that o%<4*% is memoryless: its behaviour after a finite path r depends on
the region containing the final state of . A strategy o € XAl is a region-based
(memoryless) strategy if there exists a region-based controller (act,val) such
that o = g%t Let X¢ C XIAl be the set of region-based strategies of [.A].
The region-based controller reachability problem for A, F C L and X € (0,1] is
to determine whether there exists a region-based controller (act, val) for A such

that Pro" " (OTr) > A. Note that this problem is equivalent to the reachability
problem for [A], ™, Tr and .

Translation from lc-cdPTAs to pMCs. We now describe how a pMC cor-
responding to the lc-cdPTA A can be defined, and show how feasability analysis
of this pMC can be used to establish the existence of a strategy that is obtained
from a region-based controller and that satisfies a reachability property. The
intuition is that the states of the pMC are regions of the 1-cdPTA, and that two
parameters are used for each region (I, B) € Regs and region successor action

(B,p) € RegA(l, B), where the first parameter pElpr) refers to the probability
with which (B, p) is taken from states in (I, B), and the second parameter q(( BBP))
refers to the clock valuation in B attained after letting time elapse when making
a transition from a state in (I, B) using the probabilistic edge p. The correspon-
dence between the first set of parameters described above and actions mappings,
and the second set of parameters with time-elapse valuation mappings, will allow
us to use the pMC to answer the region-based controller reachability problem
introduced above.

Let A = (L,1, inv, prob) be a lc-cdPTA. The pMC induced from A is defined
as DA = (Regs, (I, [0,0]), VA, A1), where:

~- VA= {p(;i), E;Bp) | (I, B) € Regs, (B, p) € RegA(l, B)} is the set of param-
eters;
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p1(2 —q1) *(.2))
p3(q2 — 1)
(F, [ (T, (1,2)) P (8,10,0])
Tl% (X7(4710))

Fig. 2. The pMC corresponding to the 1lc-cdPTA of Fig. 1.

— the parametric transition function A is such that, for (1, B),(I',B") € SA,
we have:

ANWLB),(W,BY) = S AN B).(B.p), (I, B),

(B,p)ERegA(l,B)
where, for (B,p) € RegA(l, B), we have that AA((I, B), (B,p), (I, B')) equals:

(
") (tpl(p)[0] ({2}, ') + tol(p)[0](0, 1)) if B = B’ = [0,0],

s

B.p) R
%?wmnngMZ> it B> [0,0], B" = [0,0],
Py - el(p)las )0, 1) if B=B">0,0]
0 otherwise.

Observe that, given regions (I, B), (I, B') € Regs and region successor action
(B,p) € RegA(l, B), the expression AA((I, B),(B,p), (I, B')) is a rational poly-
nomial over V4 desc