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Preface

The International Conference on Formal Engineering Methods (ICFEM) started in
Hiroshima, Japan in 1997 and provided a forum for both researchers and practitioners to
discuss and exchange their experience and results in research on theories, methods, lan-
guages, and supporting tools for integrating formal methods into conventional software
engineering technologies to provide more effective and efficient approaches to large-
scale software engineering. ICFEM 2024 was back to Hiroshima in Japan, the city of its
birth, from December 2 to 6, 2024. At its first return to Hiroshima since 1997, ICFEM
2024 celebrated the 25th anniversary of the ICFEM conference series.

ICFEM 2024 received 50 submissions from 21 countries worldwide. The selection
process was rigorous, with each paper receiving at least three Single-blind reviews. After
thorough discussions, the programcommittee accepted 23 research papers.However, one
paper was later withdrawn, resulting in 22 papers being included in the proceedings. The
final acceptance rate was 44%. The accepted papers span a wide range of research areas,
covering both theoretical foundations and practical applications of formal engineering
methods.

We were‘honored to have the three distinguished keynote speakers Mike Hinchey,
Naijun Zhan, andMark Lawford, who shared their invaluable insights during their talks.

Mike Hinchey presented a work entitled Formal Specification of Autonomy Fea-
tures with ARE and KnowLang. co-autored with Emil Vassev; both researchers are from
Lero, the Science Foundation of Ireland Research Centre for Software Department of
Computer Science and Information Systems, University of Limerick, Limerick, Ireland.
Autonomous systems, such as autonomous vehicles, extend regular software-intensive
systems with special autonomy features upstream. The identification of such features
is not necessarily an easy task. Sometimes, they can be explicitly stated by stakehold-
ers or in preliminary material available to requirements engineers. Often though, they
are implicit, so a process of formal specification intended to capture the autonomy fea-
tures has to be undertaken. The speaker elaborated on a methodology for capturing and
specification of autonomy featureswhere autonomy requirements are capturedwithARE
(AutonomyRequirements Engineering) and then are specifiedwith KnowLang, a frame-
work for knowledge representation and reasoning. In this approach, autonomy features
are detected as special self-* objectives backed up by different capabilities and quality
characteristics. The self-* objectives provide the system’s ability to autonomously dis-
cover, diagnose, and cope with various problems. The captured autonomy requirements
are formally specified with the KnowLang notation and then compiled to a knowledge
base that is to be used by the KnowLang Reasoner.

Naijun Zhan (School of Computer Science, Peking University, Beijing, China) pre-
sented a work entitled Synthesizing (Differential) Invariants by Reducing Non-Convex
Programming to SDP.Hybrid systems are integrations of discrete computation and con-
tinuous physical evolution. To guarantee the correctness of hybrid systems, formal tech-
niques onmodelling and verification of hybrid systems have been proposed. Hybrid CSP
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(HCSP) is an extension of CSP with differential equations and some forms of interrup-
tions for modelling hybrid systems, and Hybrid Hoare logic (HHL) is an extension of
Hoare logic for specifying and verifying hybrid systems that are modelled using HCSP.
The speaker reported an improved HHL prover, which is an interactive theorem prover
based on Isabelle/HOL for verifying HCSP models. Compared with the prototypical
release, the new HHL prover realises the proof system of HHL as a shallow embedding
in Isabelle/HOL, rather than a deep embedding. In order to contrast the new HHL prover
in shallow embedding and the old one in deep embedding, the speaker demonstrated the
use of both variants on the safety verification of a lunar lander case study.

Mark Lawford (Department of Computing and Software, McMaster University,
Canada) gave a talk entitled Challenges and Opportunities in Assurance of Software
Defined Vehicle. Automotive innovation is increasingly software driven. As a result of
the competitive environment requiring a yearly release of new automotive models fea-
turing the latest driver assistance features and innovation in electrification, safety critical
software is being developed at an unprecedented scale on extremely tight deadlines. To
be competitive automotive manufacturers and parts suppliers need to change how they
develop and assure software intensive systems. This presents a tremendous opportunity
for researchers in the application of formal methods and model-based software engi-
neering to have a significant impact on industry practice. This talk highlighted recent
work on model-based software engineering, incremental assurance, and the potential for
applications of formal methods to help the automotive industry make the transition to
the Software-Defined vehicle.

The EasyChair conference management system was set up for ICFEM 2024, sup-
porting submissions, reviewing, and volume-editing processes. We acknowledge that
it is an outstanding tool for the academic community. We would like to thank all the
authors who submitted their work to ICFEM 2024. We are grateful to the program com-
mittee members and external reviewers for their high-quality reviews and discussions.
Finally, we wish to thank the Organizing Committee members for their hard work and
continuous support. We would also like to thank Springer and the publishing team man-
aged by Ronan Nugent for their continuous support and assistance in producing the
conference proceedings. Finally, we extend our sincere gratitude to our sponsors Murata
Science and Education Foundation and Huawei Technologies Co., Ltd. and the support-
ers Information Processing Society of Japan, Hiroshima University, and IEEE Japan
Council.

We hope that the papers in these proceedings will engage readers and inspire new
ideas for future research.

September 2024 Kazuhiro Ogata
Dominique Mery

Meng Sun
Shaoying Liu
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Abstract. Reducing the gap between natural language requirements
and precise formal specifications is a critical task in requirements engi-
neering. In recent years, requirement engineering is becoming increas-
ingly complex alongside the growing intricacy of system engineering.
Most requirements are expressed in natural language, which can be
incomplete and ambiguous. However, formal languages with strict seman-
tics can accurately represent certain temporal logic properties and allow
for automated verification and analysis. This often limits the application
of verification techniques, as writing formal specifications is a manual,
error-prone, and time-consuming task. To address this, this paper pro-
poses a framework that leverages Large Language Models (LLMs) to
achieve automated conversion of natural language requirements to Com-
putation Tree Logic (CTL). To address the issue of dataset scarcity,
we leveraged the interactive and generative capabilities of LLMs. By
constructing a random generation algorithm and utilizing prompt engi-
neering, we generated an NL-CTL dataset using LLMs. The gener-
ated dataset was then used to fine-tune the T5-Large model, enhancing
its generative capacity. To improve generalization, this paper proposes
the use of the GPT-3.5 Atomic Proposition (AP) Recognition method,
which eliminates the constraints of using the framework across differ-
ent domains. A series of experimental evaluations showed that the fine-
tuned LLM achieved an accuracy of 46.4%, whereas the LLM with few-
shot learning using only prompt engineering achieved only 2% accuracy,
demonstrating the feasibility of this approach.

Keywords: Requirements Engineering (RE) · Specification
Generation · Computation Tree Logic (CTL) · Large Language Models
(LLM)
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1 Introduction

As the scale and complexity of software continue to increase, software reliability
issues have gained significant attention. Requirements engineering (RE), being
the first phase of the software life cycle, is a crucial part of software engineer-
ing. Efficient management of RE can accelerate the software development process
[21]. However, in practical software development, most software requirements are
written in natural language. The inherent ambiguity and imprecision of natural
language make it challenging to effectively ensure the completeness, consistency,
correctness, and reliability of software systems, thereby increasing the difficulty
of analyzing and processing requirements [29]. Formal specifications are math-
ematical descriptions of system properties, behaviors, and constraints, used in
fields such as system design, requirements analysis, and automated reasoning in
computer science. Compared to natural language (NL), formal specifications can
precisely define system behavior, eliminate ambiguity, and support the design
and verification of system software. Due to the need for substantial domain-
specific knowledge and a significant amount of manual work, the application of
formal specification languages is still almost exclusively performed by domain
experts.

The difficulty of using a formal specification language leads to the gap
between its advantages in software development and actual practice, so the
direct conversion of natural language to formal language is necessary for the
practical application of formal specification language. Writing formal specifica-
tions manually is not only a threshold for writers, but also very time-consuming
and error-prone, especially when dealing with complex systems. To address this,
researchers have introduced numerous automatic and semi-automatic methods
for formalizing requirements, such as template-based and deep learning methods
for generating formal specifications. Both methods do speed up the process of
writing formal specifications and reduce the probability of human error. How-
ever, template-based generation of formal specifications has poor flexibility and
users can only choose according to the template language. Formal specifications
generated based on deep learning may be more dependent on the statistical pat-
terns in the training data, and thus to a certain extent there may be linguistic
styles or patterns related to the training data. These methods have certain lim-
itations, including the need for extensive manual construction and maintenance
work, as well as difficulties in adapting to different environments [30]. However,
with the latest advances in Natural Language Processing (NLP) technology, par-
ticularly the development and application of generative Large Language Models
(LLMs), it has become possible to overcome these limitations [2]. LLMs may be
more accurate and coherent when generating formal specifications due to their
pre-training approach which gives it better language understanding and gener-
ation capabilities, and thus the generated specifications may be more accurate,
coherent, and better able to understand input natural language.

This paper uses LLMs to automatically generate formal specifications
in Computation Tree Logic (CTL) based on natural language requirements,
addressing the high specialization demands of formal verification methods. CTL,
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a branching-time logic, offers higher computational efficiency in model checking,
and many industrial model checking tools use CTL as the specification language.
A significant bottleneck in NL-to-CTL research is the lack of data. Although
modern statistical methods can surpass rule-based approaches [4], they typi-
cally require large datasets, which are costly and difficult to collect, necessitat-
ing highly specialized annotators [3]. To supplement the data creation process
and mitigate the need for large datasets, this paper employs pre-trained LLMs.
Specifically, we use GPT-3.5 to assist in dataset creation and fine-tune the T5-
Large model [27] to achieve the conversion from NL to CTL. To validate the
usability of this method, we set up a series of evaluation experiments. By train-
ing and testing the LLM on generated NL-CTL datasets of varying scales, we
revealed that the more training data used, the higher the accuracy of the fine-
tuned model. Additionally, when comparing the fine-tuned LLM with the base-
line prompted GPT-3.5, the experimental result shows that the fine-tuned LLM
achieved an accuracy of 46.4%, whereas the LLM using only prompt engineering
for few-shot learning achieved only 2% accuracy, demonstrating the feasibility
of the proposed method.

Our main contributions are as follows:

1. Construct a cross-domain NL-CTL dataset. To address the lack of
datasets, we leveraged the interaction and generation capabilities of LLMs.
By developing a random generation algorithm and prompt engineering, we
used an innovative GPT-3.5-assisted framework to generate a dataset of 3K
enhanced NL-CTL pairs. Additionally, we enhanced the generality of the data
by using the “lifted” version of NL and CTL, where all atomic propositions
(APs) in the data were hidden.

2. Fine-tuning the lifted NL-to-CTL model. We fine-tuned the T5-Large
model using the constructed dataset to improve the generative capabilities of
the large model. To enhance generalization, we using the GPT-3.5 AP Recog-
nition method to eliminate the constraints of using the framework across dif-
ferent domains. The experimental result showed that the fine-tuned T5-Large
model achieved higher accuracy compared to the baseline prompted GPT-3.5,
demonstrating the feasibility of the proposed method.

This paper is organized as follows. Section 2 gives an overview of LLMs and
CTL semantics and discusses related work. Section 3 describes the framework
and algorithm of our approach. In Sect. 4, we introduce the experimental setup
and discuss the experimental evaluation result. Section 5 concludes our work.

2 Background and Related Work

2.1 Large Language Models

Large Language Models (LLMs) are neural network models trained using massive
text data based on deep learning techniques. They are capable of understanding
and generating natural language text and perform well in a variety of linguistic
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tasks, including translation, text generation, summarization, Q&A and dialogue
systems. Common LLMs include OpenAI’s GPT series, Google’s BERT and
T5. Among them, GPT-1 explores the natural language task solving capability
of decoder-only Transformer architecture under the “pre-training + fine-tuning”
paradigm; GPT-2 preliminarily verifies the effectiveness of scaling up the param-
eters of the model (scaling up law), and explores the natural language cue-based
LLMs. GPT-3 explores the effect of language models with hundreds of billions
of parameters for the first time, and proposes a task solving method based on
“context learning”; The CodeX [5] uses code data to fine-tune GPT-3 to improve
code ability and complex reasoning; InstructGPT [25] uses reinforcement learn-
ing based on human feedback (RLHF) to strengthen the ability to follow human
commands and align human preferences; ChatGPT is similar to InstructGPT,
but further introduces dialog data for learning, thus strengthening the ability to
have multi-round conversations; GPT-3.5 [1] is able to handle a longer context
window, and can be used to solve tasks with “contextual learning”; CodeX [5]
uses code data to fine-tune GPT-3 to improve coding ability and complex reason-
ing. Handle longer context windows, has multimodal comprehension capability,
and has significantly improved capabilities in logical reasoning and complex task
processing.

LLM techniques mainly include model pre-training, setup fine-tuning, cue
learning, knowledge enhancement and tool learning. Natural Language to Pro-
gramming Language, Codex [5] model is a GPT language model fine-tuned based
on GitHub public code, which is capable of generating corresponding code based
on natural language instructions. Natural Language to Formal Specification,
nl2spec [11] is a framework for applying LLMs to derive formal specifications (in
temporal logic) from unstructured natural language.

2.2 Computation Tree Logic

Computation Tree Logic (CTL) is a type of branching-time logic, meaning that
its time model is a tree-like structure where the future is uncertain; there are
multiple paths in the future, any of which could be the actual path that is
realized. CTL belongs to a class of temporal logics that includes Linear Tempo-
ral Logic (LTL). LTL provides an intuitive and precise mathematical notation
for expressing linear-time properties. LTL formulas are suitable for describing
requirements with both logical and temporal properties, allowing for automated
verification. The syntax of LTL can be recursively defined over a set of atomic
propositions AP as follows:

ϕ ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1 ∪ ϕ2 (1)

where a ∈ AP is an atomic proposition, ϕ is an LTL formula. ¬ and ∧ represent
propositional logic negation and conjunction, respectively. © is the temporal
operator next, and ∪ is the temporal operator until. The formula ©ϕ represents
that ϕ is true in the next state. ϕ1∪ϕ2 indicates that ϕ2 is true in some state, and
ϕ1 is always true in all preceding states. Additionally, disjunction ∨, implication
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→, eventually ♦, and always � can be derived from the aforementioned operators
as derived operators. Among them, ©, ∪, ♦, and � are temporal operators. LTL
can only be verified along a single timeline and cannot distinguish temporal
behaviors on different paths. This limitation becomes evident when dealing with
branching systems, such as concurrent systems and distributed systems.

CTL addresses this issue by introducing path quantifiers, allowing for the
description of temporal behaviors across different paths. It describes the prop-
erties of system states as they change over time by combining path quantifiers
with temporal operators. The syntax of CTL is as follows:

φ ::= true | a | ¬φ | φ1 ∧ φ2 | ∀ϕ | ∃ϕ (2)

ϕ ::= ©φ | φ1 ∪ φ2 | ♦φ | �φ (3)

where φ represents a state formula, while ϕ represents a path formula, indicating
a path starting from the root node of the tree. ∀ is the universal quantifier,
indicating all future paths. ∃ is the existential quantifier, indicating the existence
of at least one future path. From these two formulas, it can be observed that in
CTL formulas, temporal operators are always preceded by path quantifiers.

2.3 Related Work

For decades, researchers have developed methods to translate natural language
sentences into various target language formulas [3,13,28]. In recent years, how to
obtain better automated tool support for efficiently converting natural language
requirements into formal specifications has become a research hotspot in the
field of formal methods. A significant amount of work in this new phase has
utilized interactive training [33,37] and physical demonstrations to infer task
constraints [7,9,31] and LTL formulas [8,10,32,35]. Early work on translating
natural language into formal specification focused on grammar-based approaches
[16,23], which can handle structured natural language. Additionally, there are
interactive methods that use SMT solving and semantic parsing [15], as well as
structured temporal methods rooted in robotics [36] and planning [26]. However,
to simplify tasks, previous works has often made strong assumptions to constrain
the input text or the output formulas, thereby limiting flexibility and generality.
For example, Finucane et al. [13], Taylor et al. [34], and Howard et al. [19] all use
the traditional approach of preprocessing the given English input by restricting
the input NL and extracting syntactic information, then identifying the patterns
or rules of the TL through classification and running an attribute-based grammar
parser to derive the target logical format.

With the rise of ChatGPT, neural networks have also been used for the gen-
eration of formal specifications in the past two years. For example, methods
include training STL models from scratch [18], fine-tuning language models [17],
or applying GPT-3 in a one-shot manner [14,24]. Cosler et al. [11] used LLMs to
map formal sub-formulas back to the corresponding natural language segments
in the input, aiming to detect and resolve the inherent ambiguities in natural lan-
guage system requirements. However, this method still requires human interven-
tion to interactively add, edit, and delete sub-translations to improve accuracy.
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Chen et al. [6] proposed an accurate and generalizable framework for converting
English instructions from NL to TL by constructing an NL-TL dataset using
LLMs and fine-tuning the LLM to enhance the accuracy of formal specification
generation. Due to the lack of datasets across different application domains and
the inherent complexity of CTL itself, the translation between natural language
and CTL has not been adequately studied. Therefore, this paper proposes a
methodological framework for the automatic generation of CTL formulas from
natural language requirements using LLMs.

3 Methodology

Fig. 1. The workflow of our study.

Figure 1 shows the workflow of formal verification in requirements engineering
with black arrows. In this workflow, experts convert natural language require-
ments into formal specifications using template-based or manual methods [12,22]
and model the system using various formal models. Finally, model checking is
performed on both the requirement specifications and the system model to ver-
ify the correctness of the requirements. Our approach leverages LLMs to achieve
the conversion of natural language requirements to CTL. First, natural language
requirements are pre-processed and converted into lifted NL to facilitate LLM
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understanding. These are then input to the fine-tuned LLM to generate corre-
sponding CTL formulas. The fine-tuning of the T5-Large model involves three
steps: first, constructing a random algorithm to generate a series of CTL for-
mulas; second, using few-shot learning methods with LLMs to convert these
into lifted NL to enrich the dataset; and third, fine-tuning the LLM with the
generated NL-CTL pairs to improve model accuracy.

3.1 Lifted NL and Lifted CTL

Hsiung et al. [20] proposed a new LTL nomenclature called ‘lifted’ LTL, which
hides specific atomic propositions (APs) corresponding to individual operations.
In this approach, each AP is replaced with a placeholder prop i. To enhance the
generality of model, we represent data as ‘lifted’ NL and CTL. This allows our
model to be trained on the general context of instructions, regardless of specific
APs. The correspondence between full NL/CTL and lifted NL/CTL is shown in
Fig. 2.

In previous work, models trained for NL to TL (Temporal Logic) conversion
typically involved translating specific actions into APs. For example, the AP
“Create a response in Slack” could be formalized as “CreateSlack”. This neces-
sitates each work to standardize its own AP content and style, thereby affecting
generalization. In this paper, instead, we use the CPT-3 AP Recognition method
to hide all APs in the data during fine-tuning and achieve a lifted model for the
conversion from lifted NL to CTL. That is, we used LLMs to recognize APs in
natural sentences, such as “create a response in Slack”, and instead of translating
it to “create Slack”, it is masked as a placeholder prop i.

Fig. 2. Illustration of lifted NL and lifted CTL.

3.2 Data Generation

This paper utilizes the LLM GPT-3.5 to aid in generating lifted NL and
CTL pairs to construct the model fine-tuning dataset. Previous work primar-
ily adopted an intuitive approach, using prompt engineering to generate addi-
tional NL-CTL pairs through few-shot learning with various NL-CTL pairs as
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prompts. However, it was found that under this approach, the model consistently
generated NL and CTL with syntactic structures similar to the given prompts,
thereby limiting the diversity of the data. To encourage the model to produce a
wider variety of sentences, we instructed it to generate corresponding NL from
different CTLs.

We used a binary tree generation algorithm to randomly synthesize various
pre-order CTLs, which are then converted into ordered expressions according
to specific rules. Algorithm 1 illustrates the method for randomly synthesizing
various pre-order CTLs, where the input is the maximum number of APs N and
the output is a pre-order CTL pre orderCTL. All operators are classified into
those with only one leaves and those with two leaves. First, a random integer
value within (1, N) is obtained as the total number of APs, then a randomly
ordered prop list of length AP nums is generated and divided into several sub-
lists sub lists (Line 4–7). For each sub-list, operators are randomly appended to
the left until each prop occupies a position in the binary tree (Line 9–12). Finally,
by attaching operators with two leaves, these modified sub-lists are assembled
back into a complete CTL (Line 13).

Algorithm 1. Algorithm for randomly generating pre-order CTL.
1: Input: N : Maximum number of APs
2: Output: pre orderCTL: Synthesized pre-order CTL
3:
4: two leaves = [&,→,↔, |, U ];
5: one leaves = [¬, AG,EG,AF,EF,AX,EX,A,E];
6: AP nums = Random.randint(1, N);
7: sub lists ← getRandomCombinationAP (AP num);
8:
9: repeat

10: sub list ← insertRandomOperators(two leaves, one leaves);
11: sub CTL ← sub list
12: until sub lists = ∅
13: pre orderCTL ← getPreOrederCTL(sub CTL, two leaves);

To make the input CTL more understandable to GPT-3.5, operators
were represented by words indicating their meanings (e.g., ⇒ (implies),
⇔(equivalent), ∨ (or), etc.). GPT-3.5 then attempted to generate original NL
sentences that closely match the semantics of the CTL. During this process,
the NL-CTL pairs in the prompts were carefully selected to enhance lexical and
structural diversity. We collected 200 NL instructions from 10 volunteers famil-
iar with robotic tasks and randomly selected 100 NLs as a prompt pool and
another 100 NLs as manual test data. In each iteration, 20 pairs were randomly
chosen from the prompt pool to serve as prompts for GPT-3.5, with examples
of prompts shown in Fig. 3.
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Fig. 3. Prompts for converting from synthesized CTL to NL via GPT-3.5.

3.3 Model Fine-Tuning

After constructing the dataset, it is used to fine-tune the LLM to enhance the
accuracy of NL2CTL conversion. The T5 model [27], proposed by the Google
Brain team, is a sequence-to-sequence (Seq2Seq) model based on the Trans-
former architecture. Its primary feature is converting various NLP tasks (such
as translation, summarization, and question answering) into a unified frame-
work for training, using a text-to-text unified model paradigm, which ensures
model flexibility. The T5 model employs mixed-precision training and adaptive
optimizers to accelerate the training process, and it utilizes data filtering and
dynamic batching to improve data efficiency, boasting excellent generalization
and transfer capabilities. T5-Large, a variant within the T5 family, has approxi-
mately 770 million parameters, making it a medium-sized pre-trained model. In
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this paper, the T5-Large (770M) model is chosen as the base LLM for model
fine-tuning, with experimental settings described in Sect. 4.

4 Implementation

4.1 Experimental Setup

The paper focuses on the feasibility of converting NL to CTL via LLM, and
the experiment is focused on enhancing the NL2CTL capability of the LLM by
fine-tuning it. The purpose of the experiment is to demonstrate the feasibility
of implementing NL2CTL using a LLM, and to show the effect of the size of
the training dataset on the ability of the LLM to NL2CTL. The experiment
consists of three main approaches: Improved NL-CTL transition performance
by fine-tuning the T5-large model as shown in Fig. 4; Hide APs as “prop i”,
anonymize them with the “prop i” placeholder to maintain the generality of the
framework; Generate NL-CTL datasets by prompting GPT-3.5 to direct it to
generate datasets suitable for fine-tuning the T5-large model as shown in Fig. 5.

Fig. 4. Fine-tuning the T5-Large Model.

The LLM we chose for fine-tuning was T5-large, which was trained separately
using five datasets with different amounts of data (containing 100, 500, 1000,
2000 and 3000 pieces of data, respectively). For all the fine-tuning experiments
on T5-large model, we choose the learning rate as 2.56e-5, a batch size of 16,
a weight decaying ratio as 0.01, and run 20 epochs for each setting. Training
and testing is performed on a single RTX 2080 Ti x2 (22GB) GPU. For the
finetuning on lifted models, the input dataset is split into a training set (0.99)
and a testing set (0.01). Finally, all fine-tuned models are tested on the same
dataset (containing 500 data points), and to ensure the accuracy of the results,
we perform three rounds of testing for each fine-tuned models, and eventually
take the average of the test accuracies.

In practical applications, we need to structure the APs in CTL (such as
“verb noun”) to allow for direct connection with controllers. Then We use GPT-3
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to identify APs in the sentence and mask them as “prop i”. APs are anonymized
using placeholders similar to “prop i” to maintain generality and simplify inte-
gration with control systems. In the future, if there are fields to use the NL2CTL
framework proposed in this paper, it can be combined with AP recognition task.

The T5-Large model excels in multi-task learning and unified text-to-text
methods for a wide range of NLP tasks. GPT-3.5, on the other hand, has advan-
tages in complex task processing and generation capabilities and is more suitable
for demanding application scenarios. The T5-Large model is categorized as a
compact model, in contrast to the GPT-3.5, which is recognized as a substan-
tially expansive model within the spectrum of large-scale models. The experi-
ments use GPT-3.5’s implementation of NL2CTL via an end-to-end approach
as the baseline for the experiments, i.e. GPT-3.5 directly converts NL to CTL
with a small amount of learning and cueing, and the same is tested using the
same dataset for the learned cued GPT-3.5 model. The experiment stores the
results of each tuned or learned model test in a table for easy manual review,
and calculates the test accuracy for comparative analysis.

Fig. 5. NL2CTL Dataset Generation

4.2 DataSet

We did not find a suitable NL2CTL dataset in the currently publicly available
dataset, and in order to allow fine-tuning in experiments as well as to test LLMs,
we propose a method to let it generate a suitable dataset by prompt of GPT-
3.5. Different datasets conforming to the CTL syntax were randomly generated
by this method (training dataset with 100, 500, 1000, 2000, 3000 data and test
datasets with 500 data). The process of generating the NL2CTL dataset is shown
in Fig. 5.
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4.3 Baseline

Fig. 6. Prompts for converting from synthesized NL to CTL via GPT-3.5.

To the best of our knowledge, there is no relevant research on the implementation
of NL2CTL using LLMs, so we decided to use the test results of GPT-3.5 directly
converting NL to CTL with few-shot learning as a baseline to compare with
those of the fine-tuned T5-Large model in the experiments, and the results of
the comparison are shown in Fig. 8. Generating the baseline: create a dialogue
with GPT-3.5, add examples and appropriate guidelines to the prompt as in
Fig. 6. GPT-3.5 learns from this conversation and then sends it the test data,
records its responses and compares them with the CTL in the dataset, records
the responses in a table, and calculates the test accuracy of the baseline (Fig. 7).
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Fig. 7. Testing the Fine-tuned T5-Large Model

4.4 Evaluation

Each model after fine-tuning or a few-shot learning converts the NL in the test
dataset to a CTL, and the CTL generated by the conversion is exactly the same
as the CTL corresponding to the NL in the dataset then currentcount + 1, and
currentcount is used to record the amount of data that has been successfully
converted from NL to CTL by LLMs at that time. When all the data in the test
dataset has been converted, calculate the test accuracy:

Accuracy = countcorrect/(total + 1) (4)

where total is the total number of test data, i.e. 500. Obviously, the higher the
accuracy, the better the ability of LLM to convert NL to CTL. For the stability
and reliability of the results, we carried out the same test for each model three
times, and took the average of all the test accuracy as the final test accuracy.

4.5 Experimental Results

As shown in Table 1, after the experiment the test accuracy of T5-Large train30
00 reaches 47% on average. T5-Large train2000, T5-Large train1000, T5-Large
train500 and T5-Large train100 have decreasing test accuracy in order. Among
them, the test accuracy of T5-Large train100 is the lowest, namely 2%. As shown
in Fig. 8, the size of the fine-tuned dataset is positively but non-linearly corre-
lated with the test accuracy, and as the fine-tuned dataset gets larger, the growth
of its data has less impact on the test accuracy. From the table it can be seen that
the test accuracy of the lowest T5-Large train100 is still much higher than that
of the GPT-3.5 after few-shot learning. It is not difficult to see that the slightly
fine-tuned categorized LLM (T5-Large) will also perform better on NL2CTL
than the few-shot learning large-scale LLM (GPT-3.5).
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Table 1. The test accuracy of the fine-tuned LLM (T5-Large) and the prompted LLM
(GPT-3.5).

LLM Under Test Data Volume Test Accuracy

GPT-3.5 prompt (Baseline) 0 raw 0.02

T5-Large train100 100 raws 0.088

T5-Large train500 500 raws 0.408

T5-Large train1000 1000 raws 0.434

T5-Large train2000 2000 raws 0.450

T5-Large train3000 3000 raws 0.464

Fig. 8. Test Accuracy vs. Training Dataset Size Chart

5 Conclusion

In this work, we propose a framework for automatically generating CTL based
on natural language requirements, leveraging LLMs, from both data generation
and model training perspectives. In this process, we constructed a dataset con-
taining approximately 3K enhanced NL-TL pairs to fine-tune the T5 model. The
fine-tuned T5-Large model achieved higher accuracy compared to the baseline
prompted GPT-3.5, demonstrating the feasibility of the proposed method.

In future work, we plan to improve the method for randomly generating
CTLs (e.g., by increasing the number of iterations) to enhance the quality of the
dataset and thereby improve the model’s accuracy. Additionally, we also plan
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to explore the generation of formal models using LLMs to further automate the
model checking-based formal verification methods.
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Abstract. The process of formal modelling often involves the “verify-
and-repair” exploration in which modellers find necessary constraints
missing after they fail to verify properties. The bottleneck in this pro-
cess is figuring out how to modify predicates of the behaviour from the
limited feedback from verification tools. To tackle the difficulty, we pro-
pose a method for repairing faulty events in Event-B models by gener-
ating what we call an invariant preservative, a predicate such that the
behaviour becomes invariant-preserving if we add it to the model. Our
method automatically derives the necessary condition on the invariant
preservative that has limited occurrences of free variables so that it can
be added to a certain part of the model. Then, our method obtains a
predicate that satisfies the condition through quantifier elimination. To
apply quantifier elimination to Event-B models written in a set-theoretic
language, we also provide a method for encoding models into integer-
based representations. We found that our method can generate missing
guard predicates for mutant models constructed from different types of
models. We also compare the repaired models to the original ones and
discuss the usefulness of our methods in developing models.

Keywords: Event-B · Model repair · Theorem proving · Quantifier
elimination

1 Introduction

Constructing correct formal models is challenging since the modeller can often
refer to only incomplete and informal information about the target system, such
as documents in natural languages.

To support this phase, there are modelling methods for the design exploration
of the target system. For instance, in the Event-B method [1], (1) the modeller
declares the system’s safety property and behaviour as a set of predicates struc-
tured as invariants and events, (2) the modelling environment generates proof
obligations (POs) of the invariant preservation, i.e. the predicates declared as
invariants are really inductive invariants of events, and (3) the modeller attempts
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to discharge POs with the help of automatic provers; a successful proof guaran-
tees the invariant preservation, while a failed proof indicates that the modeller
should restart from (1) to repair the model. A correct-by-construction formal
model is created through iterations of these steps.

In practice, however, this process is difficult to carry out seamlessly because
the modeller struggles to find a way to repair the model (e.g. identifying missing
constraints and adding them to the model) when a proof is failed. The assistance
with the repair process is currently limited; the modeller has to devise a way
to modify the model based on the feedback given by verification tools, such as
incomplete proof trees from an automatic prover or a counterexample from a
model checker.

To repair a model, the modeller can update the behaviour of the system
(specified as events) or the criteria of the correctness (specified as invariants) [15].
In this paper, we focus on repairs by updating events because the modeller
will firstly try to see which behaviour is necessary to meet the criteria, before
changing the criteria. We discuss updating invariants in Sect. 6.3.

Existing repair methods for formal models typically use model checkers to
generate concrete execution traces of the model and construct predicates from
them inductively [4,12]. Such methods suffer from state explosion if they are
applied to large-scale models or if generated predicates are partial.

To address the problem, we propose a method that generates what we call
an invariant preservative (IP), a predicate such that the behaviour becomes
invariant-preserving (repaired) if we add it to the model. We focus on formal
modelling methods based on guarded commands and instantiate the method for
the Event-B formalism.

The central part of our method is the automatic derivation of the weakest
IP from the PO of the invariant preservation. We firstly derive the condition
the IP must satisfy: it should make the model invariant-preserving, it should
be the weakest, and free occurrences of variables in it should be appropriately
restricted. We then use a quantifier elimination (QE) method to obtain a predi-
cate that satisfies the derived condition and explicitly represents the constraints
on the system’s behaviour. Since major QE algorithms are designed for formulas
of inequalities of polynomials while the language of Event-B has set-theoretic
constructs (e.g. functions as sets of ordered pairs), we also provide a method to
encode Event-B models written in set-theoretic language into ones written in
integers and arithmetic operators.

To evaluate our method, we injected faults into Event-B models, including
large-scale ones and ones using set-theoretic constructs. The result showed that
our method successfully repaired all faulty models in a timely manner.

The rest of this paper is organised as follows: Sect. 2 describes the modelling
and verification in the Event-B method. In Sect. 3, we define IP and its use
for repair. Sections 4 and 5 elaborate on our method for generating IPs and
case studies for evaluating it, respectively. In Sects. 6 and 7, we discuss how our
method can be used, can be extended, and differs from existing methods. We
finally conclude this study in Sect. 8.
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Fig. 1. Structure of Event-B model components (Color figure online)

2 Modelling and Verification in Event-B

2.1 Modelling in Event-B

Event-B [1] is a method for system-level modelling and analysis. For analysing
reactive systems, the formalism is designed with influences from the Guarded
Command language and Action Systems. The language of Event-B supports set-
theoretic constructs, including relations and functions as sets of ordered pairs.

Components of Event-B models are shown in Fig. 1.1 Static aspects of the
target system are modelled as a context, which declares user-defined datatypes s,
constants c, and their properties (axioms) A(s, c). Dynamic aspects of the system
are modelled as a machine, which declares the referred context C, variables
v, predicates of inductive invariants I(s, c, v), and state transitions as events
{e0, . . .}. An event is composed of parameters pe, guard predicates Ge(s, c, v, pe),
and before-after predicates Be(s, c, v, pe, v

′). A before-after predicate describes
the relation between the before-state v and the after-state v′.2

Remark 1. For a predicate to be legitimate as an invariant or a guard, free
variables that occur in it must be restricted: v′ (after-state variables) cannot
occur free in invariants or guards because they are constraints on the current
state; pe (parameters) cannot occur free in invariants because they are global
(non-event-specific) constraints.

Example 1 (Parking lot example). Consider a parking lot with a traffic light
(Fig. 2). Variable n is the number of cars inside. Constant ncapacity is the capacity
of the parking lot (@capacity limit). Variable L is the colour of the traffic light,
which can be green only when there are vacancies (invariant @grn avail). Event
enter unsafe declares that a car may enter (before-after predicate @inc n) when
the traffic light is green (guard @grn). Note that variables not declared before
the : | delimiter of then clause are interpreted to keep the same value as before.
In this example, L′ = L. In the next section, we show that this event does not
preserve invariant @grn avail.

1 We omit modelling constructs not directly relevant to our method, such as ones
related to refinement. See [1] for the full definition of Event-B components.

2 For simplicity, we omit user-defined datatypes s and constants c from notations of
predicates (e.g. A, I(v)) in the rest of this paper.
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Fig. 2. Event-B model of parking lot example

2.2 Invariant Preservation

One of the primary properties of Event-B models we desire to ensure is the
invariant preservation, i.e. the conjunction of predicates declared in the invari-
ants clause is actually an inductive invariant. The preservation of the invariant
by event e can be expressed as the following formula of PO:

∀pe, v, v′. A ∧ I(v) ∧ Ge(v, pe) ∧ Be(v, pe, v
′) =⇒ I(v′).

Example 2 ((Failed) preservation of invariant by enter unsafe). The formula of
the preservation of the invariant by enter unsafe is as follows:

∀color , green, red , ncapacity, n, L, n′, L′.
( color = {green, red} ∧ green �= red ∧ 0 < ncapacity

∧ n ∈ N ∧ L ∈ color ∧ n ≤ ncapacity ∧ (L = green =⇒ n < ncapacity)
∧ L = green ∧ n′ = n + 1 ∧ L′ = L

=⇒ (n′ ∈ N ∧ L′ ∈ color ∧ n′ ≤ ncapacity ∧ (L′ = green =⇒ n′ < ncapacity))).

The intuition of this PO is as follows: When the traffic light is green (this
implies that the parking lot is not full), if a car enters and the light stays green,
the parking lot should not become full (because the light stays green).

This formula is not valid. The counterexample is n = ncapacity − 1: in this
case, incrementing n makes the parking lot full (n′ = n+1 = ncapacity), while the
traffic light is kept green. Therefore, enter unsafe does not preserve @grn avail.
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Fig. 3. Events of parking lot example (repaired)

3 Repairing Machines with Invariant Preservatives

Modelling in Event-B typically aims at exploring the design of a controller’s
behaviour so that it preserves the invariant, which comes from the given require-
ments document. Therefore, the modeller repeats the process of constructing
events, failing to prove the invariant preservation, and modifying the machine.

There are different causes of failures in discharging POs for invariant preser-
vation [15]. The most typical cause is that some constraints are missing that
properly limit the state transition not to violate the invariant. Although the
invariant may sometimes turn out to be too strong or inappropriate, it is worth
firstly trying to investigate constraints that make the event invariant-preserving.

In the previous example of the failed proof, we can ‘repair’ the event by
adding a guard or modifying before-after predicates.

Example 3 (Repairing events by adding guards or before-after predicates). The
formula of invariant preservation in Example 2 was not valid because of the
possibility of the case n = ncapacity − 1. We need a case analysis here: If n =
ncapacity − 1, then we should turn the traffic light red as a car enters; otherwise
(n �= ncapacity − 1), the light should be kept green. The latter is the case of
n < ncapacity − 1 because of invariant n ≤ ncapacity (@capacity limit).

To reflect this, after duplicating event enter unsafe as enter far from full and
enter almost full, we can make them invariant-preserving (Fig. 3) by:

– Adding guard n < ncapacity − 1 (@far from full) to enter far from full,
– Adding guard n = ncapacity − 1 (@almost full) to enter almost full,
– Adding before-after predicate L′ = red (@inc n red) to enter almost full.

We call such predicates added to preserve invariants invariant preservatives
(IPs).

Definition 1 (invariant preservative). An invariant preservative for event
e is a predicate φe(v, pe, v

′) such that:

∀pe, v, v′. φe(v, pe, v
′) ∧ A ∧ I(v) ∧ Ge(v, pe) ∧ Be(v, pe, v

′) =⇒ I(v′).
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We can add an IP φe for e as a guard or a before-after predicate of e:

– Adding φe as a guard of e restricts the situation where e is enabled. We call
such φe IP guard. For instance, @far from full in Example 3 is an IP guard.
v′ should not occur in φe (Remark 1) so that φe is legitimate as a guard.

– Adding φe as a before-after predicate of e changes the state transition of e. We
call such φe IP before-after predicate. For instance, @inc n red in Example 3
is an IP before-after predicate.

In practice, we want the weakest IP (i.e. the essential missing constraint) to
maximise the debugging information. In contrast, for instance, ⊥ is the trivial
IP that repairs every event, but it is not informative for debugging.

Although we manually devised IPs in Example 3, this process is hard,
error-prone, and time-consuming in practice, especially for complex machines.
Section 4 describes our method for generating the weakest IP, while adjusting
free variables that occur in it, e.g. so that it can be added as a guard if we want.

Note that missing necessary predicates is not the only cause of the invariant
violation. In some cases, we need to modify the existing event to repair it. In
Sect. 6.2, we describe how our method is useful for such cases, too.

4 Methods

4.1 Overview

The overview of our method is shown in Fig. 4.

Fig. 4. Method overview

We aim at repairing a faulty Event-B machine, i.e. a machine with events
that violate invariants. The method is composed of four steps:

1. We encode the target machine specified in the set-theoretic language as a
machine written in integers and arithmetic operators so that QE tools will
be able to handle the predicates in Step 3.



24 T. Kobayashi and F. Ishikawa

2. For each event, we generate an IP from the encoded machine. Although it
satisfies the condition an IP should satisfy (Definition 1), it does not represent
how the behaviour should be changed (we call it an implicit IP.)

3. We apply QE to obtain the predicate that satisfies the condition of implicit IP
(explicit IP). It explicitly represents the constraint on the system’s behaviour.

4. The explicit IPs are decoded to the set-theoretic language and added to the
faulty machine to repair it.

The rest of this section elaborates on Steps 1–3 (Sects. 4.2–4.4) and an imple-
mentation (Sect. 4.5).

4.2 Step 1: Encoding Machines in Integers

To obtain explicit IPs in Step 3, we rely on QE tools that implement QE algo-
rithms for first-order formulas of polynomial equations and inequalities [3,10].
For instance, Redlog [5] supports first-order formulas with the following signa-
ture: {=, �=, <,>,≤,≥,−,+, ∗, (constants from Z)}.

Since Event-B machines are written in set-theoretic notations, we encode
them in a subset of Event-B language so that QE tools can process the models.

Also, encoded machines tend to have simple but long sentences (e.g. Fig. 5b)
to let QE tools handle them. In Sect. 6.1, we discuss possibilities of more sophis-
ticated encoding techniques.

Encoding User-Defined Datatypes. We define a mapping from values of
user-defined types to integers and use it for encoding.

Example 4 (Encoding machine Mparking). For encoding user-defined datatype
color , we use the following mapping: {red �→ 0, green �→ 1}.

s e t s color
c on s t an t s green, red , ncapacity

axioms
@color : color = {green, red}
@green red : green �= red
@capacity : 0 < ncapacity

v a r i a b l e s n,L
i n v a r i a n t s
@types : n ∈ N ∧ L ∈ color
@capac i ty l im i t : n ≤ ncapacity

@grn ava i l :
L = green =⇒ n < ncapacity

. . .

→

c on s t an t s ncapacityZ

axioms
@capac i ty i : 0 < ncapacityZ

v a r i a b l e s nZ, LZ

i n v a r i a n t s
@types i :

0 ≤ nZ ∧ (LZ = 0 ∨ LZ = 1)
@capa c i t y l im i t i :

nZ ≤ ncapacityZ

@grn ava i l i :
LZ = 1 =⇒ nZ < ncapacityZ

. . .

Encoding Pairs, Sets, Relations, and Functions. We use the following
rules: (1) Ordered pairs of values are also encoded as integers using a mapping
table. (2) Sets without extensional definitions are given extensional definitions
with a few elements. (3) A set s is encoded as an integer is such that the value
of is’s each binary digit is the value of the indicator function of s.
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Example 5 (Encoding sets and functions).
We consider a simple library system for managing which books are borrowed

by whom. Figure 5a shows a part of the library system written in the full Event-
B language. It has user-defined datatypes BOOKS and MEMBERS , which are
defined without extensional definitions; the definition simply declares there are
these (possibly infinite) sets. Variable lnd is the lending status expressed as a par-
tial function from BOOKS to MEMBERS (a subset of BOOKS ×MEMBERS ).
Event lend is about updating the lending status by adding a new pair of a book
and the member who borrowed it to lnd .

The machine of the library system can be encoded as Fig. 5b. Firstly, BOOKS
and MEMBERS are redefined as follows:

BOOKS = {b0, b1} ∧ b0 �= b1, MEMBERS = {m0,m1} ∧ m0 �= m1.

Then, we encode BOOKS , MEMBERS , and their product as follows:

{b0 �→ 0, b1 �→ 1}, {m0 �→ 0,m1 �→ 1},

{(b0,m0) �→ 0, (b0,m1) �→ 1, (b1,m0) �→ 2, (b1,m1) �→ 3}.

Since lnd is a subset of BOOKS×MEMBERS = {(b0,m0), (b0,m1), (b1,m0),
(b1,m1)}, we encode it as a 4-bit integer (invariant @i1 i set).

Since lnd is a (partial) function, (b0,m0) and (b0,m1) cannot be elements of
lnd at the same time. Thus, in the integer encoding of lnd (lndZ), the 0th bit
or the 1st should be 0. The same applies to the 2nd – 3rd bits because (b1,m0)
and (b1,m1) cannot be elements of lnd at the same time. Invariant @i1 i pfun
declares this: lndZ should not be **11 or 11** in binary notation.

Event lend is encoded as follows. Guard @params type i declares that values
of parameters bookZ and membZ are either 0 or 1. Guard @book not lent i is an
encoding of @book not lent: book ∈ dom(lnd). If bookZ = 0 (i.e. (book ,memb) is
either (b0,m0) or (b0,m1)), pairs (b0,m0) and (b0,m1) should not be elements
of lnd (i.e. lndZ should be **00 in binary notation.).

Before-after predicate @update lending i is an encoding of lnd ′ = lnd ∪
{(book ,memb)}: for instance, for (book ,memb) = (b1,m0), if the 2nd bit of
lndZ is 0, we update it to 1 (lnd ′

Z
= lndZ + 4); otherwise, no update happens

(lnd ′
Z

= lndZ).

4.3 Step 2: Generating Implicit Invariant Preservatives

In this step, for each event e, we generate an (implicit) IP for e. As we described
in Sect. 3, we aim at (1) generating the weakest IP, and (2) restricting the occur-
rences of free variables in the IP, e.g. to let us limit the situation where e is
enabled by adding a guard predicate (Remark 1).

For instance, to obtain an implicit IP guard for event e, we construct the
following predicate γe(v, pe):



26 T. Kobayashi and F. Ishikawa

Fig. 5. Encoding of Library system (Example 5)

Definition 2 (Weakest invariant preservative guard). The weakest
invariant preservative guard of event e is the following predicate γe(v, pe):

γe(v, pe) := ∀v′. (A ∧ I(v) ∧ Ge(v, pe) ∧ Be(v, pe, v
′) =⇒ I(v′)).

γe is legitimate as a guard because primed variables (v′) do not occur free in
it (Remark 1).

Theorem 1. γe is the weakest predicate among IP guards for event e.

Proof. Let ge(v, pe) be an arbitrary IP guard of e. Then,

∀pe, v, v′. (A ∧ I(v) ∧ (Ge(v, pe) ∧ ge(v, pe)) ∧ Be(v, pe, v
′) =⇒ I(v′))

⇐⇒ ∀pe, v, v′. (ge(v, pe) =⇒ (A ∧ I(v) ∧ Ge(v, pe) ∧ Be(v, pe, v
′) =⇒ I(v′)))

⇐⇒ ∀pe, v.(ge(v, pe) =⇒ ∀v′. (A ∧ I(v) ∧ Ge(v, pe) ∧ Be(v, pe, v
′) =⇒ I(v′)))

⇐⇒ ∀pe, v.(ge(v, pe) =⇒ γe(v, pe)).

��
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Example 6 (Implicit invariant preservative guard for enter unsafe). The weakest
IP for (encoded) enter unsafe from Example 1 is as follows:

γenter unsafe(nZ, LZ, ncapacityZ) =
∀n′

Z
, L′

Z
. ( 0 < ncapacityZ ∧ 0 ≤ nZ ∧ (LZ = 0 ∨ LZ = 1) ∧ nZ ≤ ncapacityZ

∧ (LZ = 1 =⇒ nZ < ncapacityZ) ∧ LZ = 1 ∧ n′
Z

= nZ + 1 ∧ L′
Z

= LZ

=⇒ (0 ≤ n′
Z

∧ (L′
Z

= 0 ∨ L′
Z

= 1) ∧ n′
Z

≤ ncapacityZ

∧ (L′
Z

= 1 =⇒ n′
Z

< ncapacityZ))).

If we add predicate γenter unsafe as a guard of event enter unsafe, the invariant
becomes preserved by the event. However, this predicate is an implicit repair;
it represents the condition on the guard to be added (“n′

Z
and L′

Z
should not

occur in it, and it should strengthen the constraint on the before-state so that
I(n′

Z
, L′

Z
) will hold under given A, I, Genter unsafe, and Benter unsafe”) rather than

how we should strengthen the constraint. An explicit representation of the guard
that satisfies this condition is generated in the next step (Sect. 4.4).

Note that other restrictions of free variable occurrences are also possible.
For example, if we bind only n′

Z
(i.e. we change the quantification to ∀n′

Z
) to

generate another implicit IP for enter unsafe, the generated IP is only legitimate
as a before-after predicate (because a primed variable L′

Z
occurs free in it), but

it describes the constraints on n′
Z

without using L′
Z
. We discuss this in Sect. 6.2.

4.4 Step 3: Obtaining Explicit Invariant Preservatives Through
Quantifier Elimination

We apply a QE tool to γe(v, pe) for generating a predicate that satisfies the
condition of the implicit IP (Sect. 4.3). In other words, in this step, we obtain a
predicate that explicitly represents how the guard should be strengthened.

Example 7 (Obtaining explicit invariant preservative guard for enter unsafe). By
applying a QE tool to the weakest IP obtained in Example 6, removing redun-
dancy, and decoding the result, we obtain the following predicate:

ncapacity − n − 1 �= 0.

Adding this to the event as its guard makes the event invariant-preserving.
This predicate is suitable as a guard because it represents the requirements

for the behaviour of the system from the viewpoint of application (“incrementing
n while keeping the light green should be allowed only when n �= ncapacity − 1,”)
while the predicate in Example 6 does not directly give such information.
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4.5 Implementation

We implemented Steps 2–3 as a plug-in of the Rodin platform [2], which is an
environment for modelling and proving in Event-B. It generates the weakest IP
guard for each event of the machine selected by the user (Fig. 6).

Fig. 6. Tool implementation

It uses Redlog [5] for eliminating quantifiers. It also detects and removes
redundant parts of QE results, such as clauses contradictory with assumptions
(A ∧ I ∧ G), by using the Z3 SMT solver [11].

5 Evaluation

5.1 Procedure

To evaluate our method, we injected faults to correct Event-B machines and
checked whether our method could repair them by generating IP guards (Fig. 7).3

Firstly, for each target machine, we encoded the machine in the language
of integers (Step 1 of the method). We carried out the encoding by manually
applying systematic rules. By using the Rodin platform, we checked that the
encoding was correct, i.e. all events of the encoded machines preserve invariants.

Next, we constructed mutants of each encoded target machine. A mutant was
created by removing a guard predicate of an event. For instance, assume that we
have a machine with two events shown in Fig. 3. Then our mutation procedure
constructs four mutants, each of which lacks one of four guards.

Then, we used our implementation to generate the weakest IP.
Finally, in the Rodin platform, we checked that generated predicates worked

as IP guards, i.e. we succeeded in proving invariant preservation after adding
them to corresponding events. Moreover, using the Z3 SMT solver [11], we
checked whether each generated IP was weaker than or equivalent to the removed
guard under the assumptions (axioms, invariants, and existing guards).

3 The materials and detailed results are located at https://github.com/tsutomu-
kobayashi/ICFEM2024.

https://github.com/tsutomu-kobayashi/ICFEM2024
https://github.com/tsutomu-kobayashi/ICFEM2024
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Fig. 7. Evaluation based on mutants

5.2 Materials

Machine |V | |I| |E| |G| t
Parking 2 4 3 5 < 0.6
Cars0 1 2 2 2 < 0.5
Cars1 3 5 4 6 < 1.1
Cars2 7 11 8 18 < 1.6
Cars3 18 34 16 41 < 2.5
Satellites0 3 7 6 13 < 0.9
Satellites1 5 5 10 24 < 0.8
Satellites2 12 55 20 78 < 9.4
Satellites3 20 89 32 154 < 16.2
Satellites4 20 7 32 134 < 7.9
Satellites5 22 4 32 141 < 1.0
Library 1 2 2 5 < 0.4

Table 1. Scales of materials for eval-
uation. |V |, |I|, |E|, |G| respectively
are numbers of variables, invariants,
events, guards. t is the time (sec) taken
for method Steps 2–3 per machine.

The target materials we used are as fol-
lows:

Cars[1, Chapter 2]. This system controls
the traffic of cars on an island and
the mainland, which are connected
by a narrow bridge with traffic lights
and sensors. The parking lot example
(Example 1) is a simplified version of
this.

Satellites [14]. This system models the
mode logic of autonomous flight forma-
tion for satellites from the European
Space Agency. We used this example
to check our method’s applicability to
industrial-scale models including vari-
ables of sets.

Library. A part of this system is shown
in Example 5. We used this example
to check our method’s applicability to
models including a partial function from/to user-defined datatypes without
extensional definitions.

Table 1 shows the scales of the target materials (encoded faulty Event-B
machines). Cars and Satellites have multiple versions of machines that corre-
spond to different levels of abstraction. For example, Cars has four levels from
the most abstract machine (Cars0) to the most concrete one (Cars3) that have
different numbers of machine constructs.

5.3 Results

The column t of Table 1 shows the time (in seconds) spent to generate explicit IPs
(Steps 2–3) per machine. Even for large-scale models such as Satellites3, it took
no more than 16.2 s. Therefore, we conclude that our method is efficient enough
to be used during iterative modelling. Note that the execution environment was
a MacBook Pro (2021) with 64GB RAM.
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After adding generated IP guards to the faulty encoded machine, we suc-
ceeded in discharging all invariant preservation POs in the Rodin platform, i.e.
we succeeded in repairing all the faulty machines.

We compared the generated guards and original guards. From the semantic
viewpoint, all generated guards were either equivalent to the original (encoded)
ones under the assumptions (axioms, invariants, and existing guards), or weaker
than the original ones. The ratio of strictly weaker guards was: 25% (Cars), 25%
(Library), 50% (Parking), and 32% (Satellites).

From the syntactic viewpoint, there were several complicated guards,
particularly for large-scale machines or the Library machine that use set-
theoretic constructs. For instance, consider the Library machine without guard
@book not lent:

s e t s BOOKS ,MEMBERS v a r i a b l e s lnd
i n v a r i a n t s @i1 : lnd ∈ BOOKS �→ MEMBERS // �→: partial function
event lend mutant any book ,memb

where @params type : book ∈ BOOKS ∧ memb ∈ MEMBERS
// removed @book not lent: book �∈ dom(lnd)

then @update lending : lnd : | lnd ′ = lnd ∪ {(book ,memb)} end

We (manually but systematically) decoded the generated guard using the
mapping shown in Example 5 and obtained the following IP:

lnd = ∅ (1)
∨ book = b0 ∧ (lnd = {(b1,m0)} ∨ lnd = {(b1,m1)} ∨ lnd = {(b1,m0), (b1,m1)}) (2)
∨ book = b1 ∧ (lnd = {(b0,m0)} ∨ lnd = {(b0,m1)} ∨ lnd = {(b0,m0), (b0,m1)}) (3)
∨ book = b0 ∧ memb = m0 ∧ (

∨

l∈{{(b0,m0)},{(b0,m0),(b1,m0)},{(b0,m0),(b1,m1)}}
lnd = l) (4)

∨ book = b0 ∧ memb = m1 ∧ (
∨

l∈{{(b0,m1)},{(b0,m1),(b1,m0)},{(b0,m1),(b1,m1)}}
lnd = l) (5)

∨ book = b1 ∧ memb = m0 ∧ (
∨

l∈{{(b1,m0)},{(b0,m0),(b1,m0)},{(b0,m1),(b1,m0)}}
lnd = l) (6)

∨ book = b1 ∧ memb = m1 ∧ (
∨

l∈{{(b1,m1)},{(b0,m0),(b1,m1)},{(b0,m1),(b1,m1)}}
lnd = l). (7)

Under invariants and guards, (1)–(3) are equivalent to the original guard
@book not lent: book /∈ dom(lnd), and (4)–(7) are equivalent to (book ,memb) ∈
lnd . Thus, this guard is weaker than the original one as it also allows for cases
such that (book ,memb) ∈ lnd , i.e. the book is already borrowed by the member.
Indeed, in that case, updating lnd to lnd ∪ {(book ,memb)} does not violate
the invariant. In other words, the original guard is stronger as it disables the
unnecessary occurrence of lend in which lending a book to a member who already
has it because such occurrence does not change any state.

In this way, generated guards can be weaker than the original ones when the
original ones reflect additional requirements represented in the form of guards.
Finding such requirements missing is not within the scope of our method and
generally cannot be automated. However, it is reasonably possible that modellers
find necessary stronger guards by checking the generated weakest guards.
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The above example also shows the fact that generated guards are sometimes
complex in the encoded style. Therefore, a systematic decoding method would
increase the practicality of our approach.

Findings from the evaluation: Our method successfully repaired all faulty
models quickly enough to support the iterative modelling process. Generating
the weakest predicates has the potential to support the case in which stronger
predicates are necessary to represent missing requirements, beyond our goal
of repair for invariant preservation. Although the correctness of generated
predicates has been confirmed, further investigation is necessary to determine
the conciseness or comprehensibility of them.

6 Discussions

6.1 Possible Extensions

Systematic Encoding/decoding Methods. Automatic or systematic encod-
ing methods will increase the practicality of the encoding step (Sect. 4.2). Such
methods can be supported by existing mathematical concepts.

For example, the Cantor pairing function π(n,m) = 1
2 (n + m)(n + m + 1) +

m can be used to encode an ordered pair of integers as an integer. Note that
the pairing function is bijective, i.e. the two integers obtained by unpairing are
unique.

We will investigate whether such encodings can be expressed in languages
supported by QE tools and whether they can be processed with QE algorithms
quickly enough.

Applicability to Other POs. In addition to the invariant preservation, Event-
B has other kinds of POs. For instance, Event-B supports the construction of
models with a stepwise refinement approach by providing special POs. Specifi-
cally, a modeller can (1) construct an abstract machine without much details of
the target system, (2) construct a concrete version with more details, then (3)
verify that the behaviours of two machines are in a forward simulation relation
by discharging special POs. Our method can also be applied to these POs.

Extending to Other Formalisms. Although we designed our method for
Event-B, the approach with slight modifications should be applicable to other
variants of the Guarded Command language because the notions of guard, state
transition, and verification using an inductive invariant are common.

6.2 Suggesting Various Repairs

We proposed repairing an event by adding the weakest IP guard to the event.
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However, there are other repairs that may be better at clearly expressing
the requirements of the target system. Therefore, various repairs need to be
suggested for the practical support of model repair, so that the user can choose
the best one.

In this section, we discuss how our method can be extended to generate
various repairs.

Repairs as Adding IPs with Different Free Variable Occurrences. As
we described in Sect. 4.3, (in addition to quantifying all primed variables,) there
are other restrictions on free variable occurrences for generating IPs. It is helpful
to generate multiple IPs by changing the restriction.

For instance, we can obtain multiple IPs for event enter unsafe (Sect. 2.1,
Example 1) as follows. Let ψ(n,L, n′, L′) be

A ∧ I(n,L) ∧ Genter unsafe(n,L) ∧ Benter unsafe(n,L, n′, L′) =⇒ I(n′, L′).

Then, under the assumption of A ∧ I ∧ Genter unsafe ∧ Benter unsafe,

1. ∀n′, L′. ψ(n,L, n′, L′) is equivalent to n �= ncapacity − 1.
2. ∀n′. ψ(n,L, n′, L′) is equivalent to n = ncapacity − 1 =⇒ L′ �= green.

This result indicates that there are two ways to repair as we described in Sect. 3:
(1) limiting the event occurrence to the case where n �= ncapacity − 1 (as in
enter far from full (Fig. 3a)), or (2) turning the traffic light red if it is going to
be full (as in enter almost full (Fig. 3b)).

Repairs as IPs with Different Strengths. Our method generates the weak-
est invariant preservative to provide the repair with the maximum debugging
information. However, the weakest one may provide too much information.

For instance, we obtained the following guard as the IP guard for a mutant
of Library example (Sect. 5.3):

book /∈ dom(lnd) ∨ (book ,memb) ∈ lnd .

Although this is weaker than the original guard @book not lent: book �∈
dom(lnd), the original guard would be preferred because it meets the require-
ment of the library system better. Therefore, it is useful to suggest IPs that
imply the weakest one. To do this, we can apply heuristics or pattern-based
approaches for generating multiple candidates. For example, we can generate
well-typed predicates and extract those that imply the weakest one.

Repairs as Removing Existing Predicates and Generating IPs.
Although our main goal was to generate a predicate added to the event without
modifying its existing predicates, we can also modify an event to repair it by
removing predicates before generating an IP.

In some cases, we cannot obtain a meaningful IP without removing existing
predicates.
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Example 8 (Weakest IPs that disable event or make event infeasible). Consider
the following event evt:

v a r i a b l e s x i n v a r i a n t s @inv : 0 < x
event evt where @grd : � then @bap : x′ = 0 end

The weakest implicit IP guard for event evt is

∀x′. 0 < x ∧ � ∧ x′ = 0 =⇒ 0 < x′.

By eliminating the quantifier, we obtain an additional guard x ≤ 0. Adding this
predicate as a guard disables the occurrence of the event because it is contra-
dictory with invariant @inv.

The weakest IP before-after predicate for the event is

0 < x ∧ � ∧ x′ = 0 =⇒ 0 < x′,

which is equivalent to an additional before-after predicate x ≤ 0∨x′ �= 0. Adding
this predicate as a before-after predicate makes the event infeasible because it
is contradictory with invariant @inv and before-after predicate @bap.

In this case, assuming that the invariant is appropriate, this result indicates
that we need to modify the existing before-after predicate @bap: x′ = 0. If we
remove @bap, the weakest IP before-after predicate for the evt becomes

0 < x ∧ � ∧ � =⇒ 0 < x′.

It is equivalent to x ≤ 0∨0 < x′, which can be added to evt as a modified version
of the before-after predicate to repair the event.

As this example shows, our method can be used to repair an event by mod-
ifying it; we remove a faulty predicate of the event and generate an IP that is
added to the event to replace the faulty one. The example demonstrates that
our method can detect the necessity of modifying the event rather than adding
missing predicates to repair it.

6.3 Applicability in Practical Contexts

We have focused on the repair approach by adding missing constraints on the
behaviour to repair the model for failure in invariant preservation proofs. In prac-
tice, the cause of the failure is not limited to missing constraints. Nevertheless,
our method can be applied firstly to investigate the possibilities for repair by
adding missing constraints. This will cover a large part of potential causes [15]
though no empirical study has yet revealed failure statistics for Event-B or for-
mal methods.

Although our method assumes that invariants are appropriate, our method
also provides insights even if the declaration of invariants is faulty. A com-
mon fault in Event-B modelling is declaring invariants that are too strong. For
instance, it is common to require that ι(v) always holds, while there is an event
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of exceptional behaviour; a possible repair for this case is to weaken the invariant
to ¬(mode = mexception) =⇒ ι(v). In this case, our method generates an IP that
makes the event infeasible, in the same manner as Example 8, which implies that
the before-after predicate of the event or the invariant should be updated.

Our future work involves developing additional repair techniques for a com-
prehensive repair tool. Specifically, we will pursue suggesting repairs by updating
invariants. Combining such a tool with a repair guideline will also be useful.

7 Related Work

There are several studies on repairing models of Event-B (or classical B-method,
whose language is similar to Event-B’s). Hoang [15] classified causes of failed
proofs in Event-B and provided guidelines for interpreting failed invariant preser-
vation proofs, e.g. if the counterexample of the invariant preservation is unreach-
able, it means the invariant is too weak and it should be strengthened by adding
an invariant predicate. However, the paper does not explain how to fix the model.
The ProB model checker framework has a disprover [9], which efficiently gener-
ates counterexamples of the invariant preservation. Schmidt et al. [12] proposed
an interactive workflow for repairing B models. The approach uses a model
checker to obtain examples of traces, constructs constraints on states using pre-
defined templates, and uses a constraint solver to generate a predicate for repair-
ing the model. Cai et al. [4] proposed a tool that generates various candidates of
modifications of the target model and evaluates them to pick the one with the
best score. It constructs candidates by analysing concrete traces of state transi-
tions generated by a model checker. The evaluator based on machine learning is
trained to learn the state transitions of the original model, and it gives a high
score to a repair candidate if its state space is close to the original’s.

The primary difference between our method and those repair approaches is
that they generate concrete traces of event occurrences to construct repairs,
while ours does not. Because of this, our method is applicable to larger target
models. Moreover, the repair constructed with our method is guaranteed to be
the weakest (the most modest) among possible ones (Theorem 1).

QE has applications in a wide range of problems, including those in theorem
proving and software engineering. Dolzmann et al. [6] proposed a method for
automatic theorem proving of geometric problems using QE. Sturm et al. [13]
proposed a method using multiple QE tools to automatically synthesise certifi-
cates for verifying hybrid dynamical systems (e.g. Lyapunov function and induc-
tive invariant.) In Kovács and Voronkov’s method [8], for a loop of a program
using arrays, QE is used to extract information, which is analysed and processed
by a theorem prover to obtain loop invariants. Unlike these methods, our method
uses QE for repairing formal models written in set-theoretic formulas.

Automated program repair has been intensively investigated in the software
engineering community [7]. Code completion or suggestion is another active area
for automated support of engineers, which is being accelerated with large lan-
guage models, e.g. GitHub Copilot. Those techniques for program code often
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apply heuristic or learning-based “generate-and-validate” approaches. Similar
automated support for engineers needs to be provided in formal methods as
well while “correct-by-construction” generation is more suitable in the context
of formal models as proposed in this paper.

8 Conclusion

In this paper, we tackled the problem of generating repairs of formal behavioural
models, which is crucial in developing formal models through the exploration of
designs. Our method generates the condition on the weakest predicate miss-
ing for preserving the invariant of a given Event-B model while controlling the
occurrences of free variables in it. We then use a quantifier elimination (QE)
tool to obtain a predicate that satisfies the condition. We also provide a method
for systematically encoding/decoding set-theoretic predicates into an integer-
based language to let QE tools handle Event-B models. For the evaluation,
we constructed mutations of correct Event-B models, including complex ones,
and succeeded in repairing them quickly. Our future work includes automated
encoding/decoding of models and suggesting various repairs, including ones that
involve modifications of the predicates existing in the target model.
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Abstract. Railway scheduling consists in ensuring that a set of trains
evolve in a shared rail network without collisions, while meeting schedule
constraints. This problem is notoriously difficult, even more in the case of
uncertain or even unknown train speeds. We propose here a modeling and
verification approach for railway scheduling in the presence of uncertain
speeds, encoded here as uncertain segment durations. We formalize the
system and propose a formal translation to PTAs. As a proof of concept,
we apply our approach to benchmarks, for which we synthesize using
IMITATOR suitable valuations for the segment durations.

Keywords: Railway scheduling · Timed automata · Parameter
synthesis · IMITATOR

1 Introduction

Railway scheduling consists in ensuring that a set of trains evolve in a shared
rail network without collisions, while meeting local or global, absolute or relative
timing constraints. This problem is notoriously difficult, and even more in the
case of uncertain or even unknown train speeds, for which the solution needs
to exhibit (or synthesize) speeds for which the schedule constraints are met
without collisions. This becomes even more tricky when the schedule constraints
(specifying, e.g., the time difference between two events in the network) become
themselves uncertain or unknown.

Contributions. In this paper, we offer a modeling and verification framework for
railway scheduling in the presence of uncertain speeds, modeled using uncertain
segment durations. Our railway model is close to that of [17] with some differ-
ences and simplifications: we consider a set of trains evolving in a shared network
made of a double-vertex graph modeling segments and stations. Segments have a
length and a maximum speed (which can be refined using the maximum speed of
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trains); such lengths and speeds are here encoded using traversal durations. Com-
pared to [17], we notably extend the model with the ability to express uncertain
or unknown speeds (and therefore durations). As target formalism for specifi-
cation and verification, we choose parametric timed automata (PTAs) [4], an
extension of timed automata (TAs) [3] with unknown timing constants, allowing
to model variability and uncertainty. Our contributions are three-fold:

1. a formal modeling of the train trajectory problem under uncertain speeds;
2. a translation scheme from our formal model into PTAs; and
3. a set of experiments to show the applicability of our approach.

Outline. We review related works in Sect. 2. We recall necessary preliminaries in
Sect. 3. We formalize our railway model (and the main problem) in Sect. 4. Our
translation to PTAs is described in Sect. 5. As a proof of concept, we apply our
translation to benchmarks in Sect. 6. We conclude in Sect. 7.

2 Related Works

A number of works attempt to formalize railway scheduling problems using for-
mal methods, with different model assumptions, and different target formalisms.
In [11,22], the focus is on the formalization of railway control systems using
extensions of hierarchical state machines called “Dynamic STate Machines”
(DSTMs). In [24,25], colored Petri nets are used to model railway interlocking
tables, with applications to Thai railway stations. Recent works such as [17,20]
use SAT techniques, with [17] modeling continuous dynamics in a quite involved
way.

Timed automata are a particularly well-suited formalism to model such prob-
lems, due to their ability to model concurrent and timed behaviors. Therefore,
a number of works (such as [9,14,15,18,23,26]) are interested in scheduling or
train interlocking problems. Timing uncertainty is not considered though.

In [12], so-called parametric timed automata (differing from usual PTAs [4],
as events can be parametrized too) are used to build monitors with variability
in order to perform runtime verification of computer-based interlocking systems;
an application to Beijing metro line 7 is briefly studied.

In contrast to these works, we address here uncertain or unknown segment
traversal durations; we allow in addition for parametric schedule constraints.

Beyond the specific application to railways, planning and scheduling using
TAs was considered in, e.g., [1,2,16]. Scheduling in the presence of uncer-
tainty was addressed in some works using parametric timed automata, including
scheduling problems with applications to the aerospace [8,13], or schedulability
under uncertainty for uniprocessor environments [5].

3 Preliminaries

We denote by N,Z,Q≥0,R≥0 the sets of non-negative integers, integers, non-
negative rationals and non-negative reals, respectively. Let �� ∈ {<, ≤, =, ≥, >}.
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Clocks are real-valued variables that all evolve over time at the same rate.
Throughout this paper, we assume a finite set X = {x1 , . . . , xH} of clocks. A
clock valuation is a function μ : X → R≥0, assigning a non-negative value to
each clock. We write 0 for the clock valuation assigning 0 to all clocks. Given a
constant d ∈ R≥0, μ + d denotes the valuation s.t. (μ + d)(x) = μ(x) + d, for all
x ∈ X.

A (timing) parameter is an unknown rational-valued timing constant of a
model. Throughout this paper, we assume a finite set P = {p1, . . . , pM} of param-
eters. A parameter valuation v is a function v : P → Q≥0.

A parametric clock constraint C is a conjunction of inequalities over X ∪ P

of the form x ��
∑

1≤i≤|P| αipi + d, with pi ∈ P, and αi, d ∈ Z. Given C, we
write μ |= v(C) if the expression obtained by replacing each x with μ(x) and
each p with v(p) in C evaluates to true.

3.1 Parametric Timed Automata

Parametric timed automata (PTAs) extend TAs with a finite set of timing
parameters allowing to model unknown constants.

Definition 1 (Parametric timed automaton [4]). A PTA A is a tuple A =
(Σ, L, �0, �f ,X,P, I, E), where:
1. Σ is a finite set of actions;
2. L is a finite set of locations;
3. �0 ∈ L is the initial location;
4. �f ∈ L is the final location;
5. X is a finite set of clocks;
6. P is a finite set of parameters;
7. I is the invariant, assigning to every � ∈ L a parametric clock constraint I(�)

(called invariant);
8. E is a finite set of edges e = (�, g, a, R, �′) where �, �′ ∈ L are the source

and target locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a
parametric clock constraint (called guard).

As often, we assume PTAs extended with discrete global variables such as
integer- or Boolean-valued variables. We also assume standard parallel compo-
sition of PTAs, synchronized on actions. The parallel composition of n PTAs is
a PTA.

Definition 2 (Valuation of a PTA). Given a parameter valuation v, we
denote by v(A) the non-parametric structure where all occurrences of a param-
eter pi have been replaced by v(pi).

Remark 1. We have a direct correspondence between the valuation of a PTA
and the definition of a TA. TAs were originally defined with integer constants
in [3], while our definition of PTAs allows rational-valued constants. By assuming
a rescaling of the constants (i.e., by multiplying all constants in a TA by the
least common multiple of their denominators), we obtain an equivalent (integer-
valued) TA, as defined in [3]. So we assume in the following that v(A) is a TA.
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Definition 3 (Semantics of a TA). Given a PTA A = (Σ, L, �0, �f ,X,P, I, E)
and a parameter valuation v the semantics of the TA v(A) is given by the TTS
Tv(A) = (S, s0, Σ ∪ R≥0, →), with

1. S =
{

(�, μ) ∈ L × R
H
≥0 | μ |= I(�)v

}
, s0 = (�0,0),

2. → consists of the discrete and (continuous) delay transition relations:
(a) discrete transitions: (�, μ) e�→ (�′, μ′), if (�, μ), (�′, μ′) ∈ S, and there exists

e = (�, g, a, R, �′) ∈ E, such that μ′ = [μ]R, and μ |= v(g).
(b) delay transitions: (�, μ) d�→ (�, μ + d), with d ∈ R≥0, if ∀d′ ∈ [0, d], (�, μ +

d′) ∈ S.

Moreover we write (�, μ) (d,e)−→ (�′, μ′) for a combination of a delay and discrete
transition if ∃μ′′ : (�, μ) d�→ (�, μ′′) e�→ (�′, μ′).

Given a TA A with concrete semantics TA, we refer to the states of S as
the concrete states of A. A run of A is an alternating sequence of concrete
states of A and pairs of edges and delays starting from the initial state s0 of
the form (�0, μ0), (d0, e0), (�1, μ1), · · · with i = 0, 1, . . . , ei ∈ E, di ∈ R≥0 and
(�i, μi)

(di,ei)−→ (�i+1, μi+1).

4 Railway System Model

We formalize here our railway system model. Our railway model is inspired by
that of [17], with some differences that will be highlighted. A key difference is
the ability of our model to define parametric durations. We also propose a more
formal definition of the system.

4.1 Rail Network Graph

The infrastructure is modeled using a double-vertex graph [21], with nodes and
segments. Nodes can be normal nodes (not allowing stopping) or stations (where
trains may choose to stop or not). Segments have a length and a speed limit,
encoded here using a segment traversal time (which can be exceeded for slower
trains that have a speed limit smaller than the segment maximal speed). Bound-
ary nodes are start or end nodes for the trains. As in [17], we do not model slope,
angle or tunnels. However, cycles can be encoded, as opposed to [20] where this
is not immediate.

We assume that segments are bidirectional, that at most one train is allowed
in a segment, and that each segment is longer than any train; as a consequence, a
train can occupy at most two segments at once. As in [17], “to support modeling
of railway junctions, nodes of the graph have two sides (illustrated by black and
blue or red colors in Fig. 1). In order to avoid physically impossible (e.g. too
sharp) turns, a train has to visit both sides when transferring via such a double-
sided node.” Different from [17], we model segment length and speed using a
traversal time; similarly, since trains can occupy two segments at the same time,



Tuning Trains Speed in Railway Scheduling 41

we model the time needed to completely move from one segment to the next
one using another traversal time. These times are minimum, as slower trains
can potentially define longer times for each segment and pairs of segments (see
Definition 5).

Definition 4 (rail network graph). A rail network graph is a tuple G =
(N, B,St,Seg,SegDur ,SegsDur ,T ) where

– N is the set of nodes,
– B ⊆ N is the set of boundary nodes,
– St ⊆ N is the set of stations,
– Seg is the set of segments,
– SegDur : Seg → Q≥0 ∪ P assigns a (possibly parametric) duration to each

segment,
– SegsDur : (Seg × Seg) ⇀ Q≥0 ∪ P assigns a (possibly parametric) duration to

each pair of consecutive segments, and
– T ∈ 2Seg × N × 2Seg is the set of transitions.

Transitions encode the way trains can move via nodes. For example, given
a transition (l, n, r) ∈ T , a train can move from any segment seg ∈ l to any
segment seg′ ∈ r via n (or the opposite way).

Example 1. Consider the rail network graph in Fig. 1. The graph contains 4
boundary nodes (A, B, C, D) and 3 stations (depicted in red, and labeled with
a number). Other nodes are normal nodes. Segments are labeled with a number
identifying them. We can assume for example that the minimum time to traverse
segment 1 is set to 8, the time to move from segment 1 to 2 is 2, while the time
to move from segment 1 to 3 is 1 (values not depicted in Fig. 1).

Fig. 1. An example of a rail network graph with 3 trains [17]
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4.2 Trains

A train is characterized by its velocity limit and its connection. Different
from [17], weight, acceleration and deceleration are not encoded; we assume they
can be incorporated in segment durations. Trains always drive at their maximum
possible speed; they can however stop arbitrarily long in stations.

Connection Constraints. As in [17], a connection is a mapping of a train to
a non-empty list of nodes that must be visited in the given order. Only the first
and the last element can be boundary nodes. The list of nodes must start with
the boundary node denoting the starting point of the train. The list may then
contain nodes that must be visited; if a node is a station, then the train can stop
at this station. Trains can only stop at stations part of the connection. If the
last node of the list is a boundary node, then the train must end in this node. If
the last node of the connection is not a boundary node, then the train can end
in any boundary node.

Each train has exactly one connection.

Example 2 (train connections [17]). Consider the green train from Fig. 1. Assume
its connection is [A, 3]. This connection denotes that the green train must start at
node A, must stop at train station 3, but cannot stop at train station 1 because
it is not part of the connection. The train can end in any boundary node (even
though, considering the graph topology, only D can be an end node considering
the connection).

Consider the red train from Fig. 1. Assume its connection is [D, A]. This
connection denotes that the train must depart from D, and reach A without
stopping at any intermediate station; note that there are three paths allowing
this connection.

Definition 5 (train). Given a rail network graph G = (N, B,St,Seg,SegDur ,
SegsDur ,T ), a train over G is a triple t = (TSegDur ,TSegsDur ,C ) where

– TSegDur : Seg → Q≥0 ∪ P assigns a possibly parametric duration to each
segment,

– TSegsDur : (Seg × Seg) ⇀ Q≥0 ∪ P assigns a possibly parametric duration to
each pair of consecutive segments, and

– C ∈ N∗ is the train connection.

Given a segment, a train drives at its maximum speed depending on the
network conditions: that is, the segment duration for this train is the maxi-
mum between the segment duration specified by the network (SegDur) and the
segment duration specified by the train (TSegDur)—and similarly for pairs of
consecutive segments.

4.3 Schedule Constraints

We formalize the schedule constraints from [17], allowing to compare the time
when a train arrives or departs from a node: arrival(t, n) (resp. departure(t, n))
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denotes the time when train t arrives at (resp. leaves) node n. We use as generic
notation visit(t, n) to denote arrival or departure. We define three forms of con-
straints, detailed in the following. An originality of our approach is that we also
allow for parametric constraints.

Ordering Constraints. Ordering constraints constrain the order in which vis-
its should be made. They are of the form

visit1(t1, n1) �� visit2(t2, n2).

Absolute Timing Constraints. Absolute timing constraints constrain the
visit of a node at an absolute time. They are of the form

visit(t, n) �� d, with d ∈ Q≥0 ∪ P.

Relative Timing Constraints. Relative timing constraints constrain the time
between two visits. Let transfer(visit1(t1, n1), visit2(t2, n2)) := visit2(t2, n2) −
visit1(t1, n1). Then relative timing constraints are of the form

transfer(visit1(t1, n1), visit2(t2, n2)) �� d, with d ∈ Q≥0 ∪ P.

Finally, let us define wait(t, n) := transfer(arrival(t, n), departure(t, n)).

Example 3 (schedule constraints). We formalize in the following some of the
informal examples from [17]. The fact that the blue train must start before
the green train can be encoded using departure(tblue, A) ≤ departure(tgreen, A).
The fact that the red train starts before the green train approaches node 1
can be encoded using departure(tred , D) ≤ arrival(tgreen, 1). The fact that the
red train must reach A within 10 time units after entering the network can be
encoded using transfer(departure(tred , D), arrival(tred , A)) ≤ 10. The fact that
the green train must wait at node 3 for at least p time units can be encoded
using wait(tgreen, 3) ≥ p.

4.4 Constrained Railway System

Definition 6 (constrained railway system). A constrained railway system
is a tuple S = (G, T , SC) where
– G is a rail network graph,
– T is a set of trains over G, and
– SC is a set of schedule constraints.

4.5 Objective

Train trajectory problem under uncertain speeds:
Input: a constrained railway system
Problem: Synthesize segment durations and schedule constraints parame-
ters such that all train connections and schedule constraints are met.
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Fig. 2. Modeling two consecutive segments segi and segj via node nij for train tk

5 Translation to Parametric Timed Automata

5.1 Overview of the Translation

Our translation is modular, in the sense that each train and each schedule con-
straint is translated into a different PTA. The system is made of the parallel
composition of these PTAs, synchronized using the actions modeling the arrival
of a train into a node, and the departure of a train from a node.

5.2 Railway Model and Trains

Due to the concurrent and real-time nature of the system, a simple discrete graph
with, e.g., a list of trains currently at each node, is not a suitable approach.
Instead, we choose a fully distributed approach, where each train evolves in its
own representation of the rail network graph, in a continuous manner. That is,
we define for each train k a PTA (with a single clock xk), with the set of locations
being made of the segments and the node of the rail network graph.

The mutual exclusion in segments and nodes is ensured using global Boolean
variables, carefully tested and updated when attempting to enter, and when
exiting a segment or node. More precisely, the occupancy of each segment segi
is encoded by a Boolean variable segfreei (denoting that the segment is free).

We give in Fig. 2 the encoding of two consecutive segments segi and segj via
a node nij for a given train tk = (TSegDur ,TSegsDur ,C ). As expected, the
train can remain in a segment exactly max(SegDur(segi),TSegDur(segi)) time
units, and similarly in a location modeling the move of a segment to the next
one (here location “nij”). A train can move to the node between two segments
only if the next segment (segj) is free (“segfreej = �”), and the segment then
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becomes occupied (“segfreej ← ⊥”). The actions “arrivalkij” and “departurekij”
are used to (potentially) synchronize with PTAs modeling schedule constraints.

If the node between segi and segj is a station in which the train may stop
(because it is part of its connection), then it is possible to stay longer in this
node: in that case, the “=” sign in the guard between locations “nij” and “segj”
in Fig. 2 becomes “≥”, and the invariant of location “nij” is removed.

Connections. A connection is easily encoded using a discrete integer-valued vari-
able: a node occurring at the nth position of the connection can only be visited
if n − 1 nodes were visited by this train in the past, which is easily modeled
by incrementing a local discrete integer. The initial location of the train PTA is
the node in which the train starts, and the final location is the node the train is
supposed to reach at the end of its connection.

5.3 Schedule Constraints

Ordering constraints are modeled exactly like connections, using discrete vari-
ables making sure the visits are performed in the specified order.

Each absolute timing constraint is modeled using a dedicated PTA, using a
(single, global) clock xabs measuring the absolute time, i.e., never reset through-
out the PTAs. We give in Fig. 3a the PTA modeling constraint visit(t, n) �� d.
The PTA simply constrains action visittn to occur only whenever guard “xabs ��
d” is satisfied (recall that “visit” stands for either “arrival” or “departure”).

Each relative timing constraint is modeled using a dedicated PTA, using
a local clock x measuring the relative time between different events. We give
in Fig. 3b the PTA modeling the relative timing constraint transfer
(visit1(t1, n1), visit2(t2, n2)) �� d. This PTA constrains the time difference
between visitt1n1 and visitt2n2 to be as specified by the constraint, using guard “x ��
d”.

Fig. 3. Modeling schedule constraints

5.4 Solving the Train Trajectory Problem

Given A the PTA resulting of the parallel composition of the aforementioned
PTAs, the trajectory problem without timing parameters is satisfied if the final
location of all PTAs is reachable. That is, each train reached its final destination,
while all schedule constraints are satisfied.
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Fig. 4. An example of a serial-parallel infrastructure, with NS = NP = 3 [17]

In the presence of timing parameters, the set of parametric durations (mod-
eling uncertain segment durations) for which all train connections and schedule
constraints are met corresponds to the set of parameter valuations for which the
final location of all PTAs is reachable. This can be solved using reachability-
synthesis, i.e., the synthesis of timing parameters for which some PTA location
is reachable [4]. While reachability-emptiness is in general undecidable [4,6],
reachability-synthesis can be effectively solved under the assumption that there
is no loop in the rail network graph.

6 Experiments

As a proof of concept, we verify two constrained railway systems using the
IMITATOR parametric timed model checker [7]. IMITATOR takes as input net-
works of parametric timed automata extended with a number of features, such
as synchronization and discrete variables (used here). Experiments were con-
ducted on a Dell Precision 5570 with an Intel R© CoreTM i7-12700H with 32 GiB
memory running Linux Mint 21 Vanessa. We used IMITATOR 3.4-alpha “Cheese
Durian”, build feat/forall_actions/788f551. Models (including durations for
Fig. 1) and results can be found at https://www.imitator.fr/static/ICFEM24
and https://doi.org/10.5281/zenodo.13789618.

Running Example. We first consider the running example in Fig. 1, without tim-
ing parameters. IMITATOR derives in 1.24 s that the train trajectory problem
is satisfied, i.e., there exists a schedule such that all trains meet their connec-
tions and schedule constraints. Second, we add a parametric schedule constraint
visit(tred, A) ≤ pR, where pR ∈ P. That is, pR denotes the upper bound such
that the red train reaches its destination. IMITATOR derives in 1.91 s the set
of parameter valuations pR ≥ 36, i.e., the red train cannot be faster than
36 time units. Third, we parametrize the minimum duration for segments 2
and 7, i.e., SegDur(seg2) = p2 and SegDur(seg7) = p7, with p2, p7 ∈ P. IMITA-
TOR derives in 9.83 s the set of parameter valuations (pR ≥ p2 + 28) ∨ (pR ≥
p2 + p7 + 20) ∨ (pR ≥ 45). This gives the correct (sound and complete) condi-
tion over the segment durations and schedule constraints parameters such that
all train connections and schedule constraints are met. The fact that IMITATOR
derives symbolic (continuous) sets of timing parameters is a major advantage
over, e.g., SMT solvers, that would typically derive (non-necessarily complete)

https://www.imitator.fr/static/ICFEM24
https://doi.org/10.5281/zenodo.13789618
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discrete sets of specific valuations. The symbolic and dense nature of our results
comes from the underlying symbolic techniques for parameter synthesis using
PTAs.

Scalability. To evaluate the scalability of our approach, we consider a serial-
parallel infrastructure, i.e., a network with NS serially connected groups of NP

identical parallel tracks with a station. Connections only include [S, E], i.e.,
trains cannot stop at any station, and are free to use any path. This variety
of choices for each train obviously leads to an exponential blowup. We consider
various values for the number NT of trains in the infrastructure, and for the
number of groups NS and parallel tracks NP ; as in [17], we fix NS = NP . An
example with NS = NP = 3 is given in Fig. 4: NS = 3 denotes the three groups
from S to E (from left to right), while NP = 3 denotes the three options (drawn
vertically) to traverse one group.

We reuse two scenarios from [17]: the “nop” scenario does not contain any
parametric duration, nor any schedule constraint; however, contrarily to [17], we
add one parametric absolute timing constraint: arrival(tNT

, E) ≤ J , with J ∈ P

(in [17], J is a constant manually tuned). That is, we measure the end-to-end
time from the first train leaving S to the last train reaching E.

The “last” scenario in [17] additionally ensures that the last train takes less
than bnd time units between its departure and arrival. Again, we parametrize this
value instead of manually enumerating it, by adding the following relative timing
constraint: transfer(departure(tNT

, S), arrival(tNT
, E)) ≤ bnd, with bnd ∈ P.

Note that a direct comparison with the experiments of [17] would probably
not make sense since i) the model is not the same (on the one hand, a more
involved dynamics is considered in [17] and, on the other hand, we allow for
more flexible durations and schedule constraints), ii) the segment durations are
not given in [17] and, most importantly, iii) we synthesize correct valuations
while [17] only verifies the system for constant values.

We give in Table 1a the results for the “nop” scenario: we give from left to
right the numbers of groups (and parallel tracks), of trains, of PTAs in the trans-
lated model, of clocks, of parameters, of generated states during the analysis;
we finally give the synthesized value for J and the computation time. “T.O.”
denotes timeout after 1 800 s. Similarly, we give in Table 1b the results for the
“last” scenario with, as additional column, the synthesized bound “bnd” for the
relative timing constraint.

While the computation time is clearly exponential, which is not a surprise
considering the way we designed this scalability test, a positive outcome is that
we get interesting results for up to 4 trains or up to 4 groups of 4 parallel tracks,
a rather elaborate situation—especially in a parametric setting with unknown
timing bounds in the schedule constraints.

A difference with [17,20] is that we can automatically synthesize the bound
between the first train departure and the last train arrival, while they are man-
ually iterated in [17,20]. The second parameter (“bnd”) is simply tested in [17]
against 3 values (10, 102, 103) without attempting to synthesize a tight valuation.
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Table 1. Experiments

(a) Scenario “nop’
NS NT |A| |X| |P| |S| J t(s)
2 1 2 2 1 25 63 0.01
2 2 3 3 1 238 75 0.08
2 3 4 4 1 2323 87 2.68
2 4 5 5 1 22450 99 96.02
3 1 2 2 1 51 92 0.01
3 2 3 3 1 1237 104 0.68
3 3 4 4 1 27385 116 137.61
3 4 - - - - - T.O.
4 1 2 2 1 87 121 0.03
4 2 3 3 1 3195 133 3.28
4 3 - - - - - T.O.

(b) Scenario “last”
NS NT |A| |X| |P| |S| J bnd t(s)
2 1 2 3 2 25 63 63 0.01
2 2 3 4 2 238 75 63 0.12
2 3 4 5 2 2323 87 63 3.40
2 4 5 6 2 22450 99 63 113.41
3 1 2 3 2 51 92 92 0.02
3 2 3 4 2 1052 104 92 0.91
3 3 4 5 2 27385 116 92 157.78
3 4 - - - - - - T.O.
4 1 2 3 2 87 121 121 0.04
4 2 3 4 2 3195 133 121 4.64
4 3 - - - - - - T.O.

7 Conclusion and Perspectives

We presented a formal model for verifying constrained railway systems in the
presence of unknown durations, not only to model segment traversal times, but
also to be used in relative and absolute schedule constraints. Our translation to
PTAs allowed us to verify benchmarks using IMITATOR, and to derive internal
segment durations and optimal values for schedule constraints.

We believe our framework, although simple, can serve as a preliminary basis
for more involved settings. Notably, modeling acceleration and deceleration
would be an interesting enhancement, possibly using piecewise discretization
to keep the linear nature of our framework. Taking energy consumption into
consideration would be another interesting future work, e.g., with an optimality
criterion, perhaps integrating our setting with other approaches such as [10,19].
In addition, tackling the exponential blowup could be partially achieved using
partial order or symmetry reductions, since these models are heavily symmetric.
Finally, we used here an ad hoc modeling language; integrating this framework
into standard domain-specific languages will be an interesting extension.

Acknowledgments. I would like to thank Tomáš Kolárik and Stefan Ratschan for
introducing me to their work, and an anonymous reviewer for helpful comments. The
colored trains drawn using LATEX TikZ in Fig. 1 are designed by cfr from stackexchange.
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Abstract. In 2009, Franck Cassez showed that the timed opacity prob-
lem, where an attacker can observe some actions with their timestamps
and attempts to deduce information, is undecidable for timed automata
(TAs). Moreover, he showed that the undecidability holds even for sub-
classes such as event-recording automata. In this article, we consider
the same definition of opacity for several other subclasses of TAs: with
restrictions on the number of clocks, of actions, on the nature of time, or
on a new subclass called observable event-recording automata. We show
that opacity can mostly be retrieved, except for one-action TAs and for
one-clock TAs with ε-transitions, for which undecidability remains. We
then exhibit a new decidable subclass in which the number of observa-
tions made by the attacker is limited.

Keywords: timed automata · opacity · timing attacks

1 Introduction

The notion of opacity [18,24] concerns information leaks from a system to an
attacker; that is, it expresses the power of the attacker to deduce some secret
information based on some publicly observable behaviors. If an attacker observ-
ing a subset of the actions cannot deduce whether a given sequence of actions
has been performed, then the system is opaque. Time particularly influences the
deductive capabilities of the attacker. It has been shown in [22] that it is possi-
ble for models that are opaque when timing constraints are omitted, to become
non-opaque when those constraints are added to the models.

Timed automata (TAs) [2] are an extension of finite automata that can mea-
sure and react to the passage of time, extending traditional finite automata with
the ability to handle real-time constraints. They are equipped with a finite set
of clocks that can be reset and compared with integer constants, enabling the
modeling and verification of real-time systems.
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1.1 Related Work

There are several ways to define opacity problems in TAs, depending on the
power of the attacker. The common idea is to ensure that the attacker cannot
deduce from the observation of a run whether it was a private or a public run.
The attacker in [19] is able to observe a subset Σo ⊆ Σ of actions with their
timestamps. In this context, a timed word w is said to be opaque if there exists
a public run that produces the projection of w following Σo as an observed timed
word. In this configuration, one can consider the opacity problem consisting of
determining, knowing a TA A and a set of timed words, whether all words in
this set are opaque in A. This problem has been shown to be undecidable for
TAs [19]. This notably relates to the undecidability of timed language inclusion
for TAs [2]. However, the undecidability holds in [19] even for the restricted class
of event-recording automata (ERAs) [3] (a subclass of TAs), for which language
inclusion is decidable. The aforementioned negative results leave hope only if the
definition or the setting is changed, which was done in four main lines of work.

First, in [26,27], the input model is simplified to real-time automata [20],
a restricted formalism compared to TAs. In this setting, (initial-state) opacity
becomes decidable [26,27]. In [28], Zhang studies labeled real-timed automata
(a subclass of labeled TAs); in this setting, state-based (at the initial time, the
current time, etc.) opacity is proved to be decidable by extending the observer
(that is, the classical powerset construction) from finite automata to labeled
real-timed automata.

Second, in [5], the authors consider a time-bounded notion of the opacity
of [19], where the attacker has to disclose the secret before an upper bound, using
a partial observability. This can be seen as a secrecy with an expiration date. In
addition, the analysis is carried over a time-bounded horizon. The authors prove
that this problem is decidable for TAs.

Third, in [11,12], the authors present an alternative definition to Cassez’s
opacity by studying execution-time opacity : the attacker has only access to the
execution time of the system, as opposed to Cassez’ partial observations with
some observable events (with their timestamps). In that case, most problems
become decidable (see [10] for a survey). Untimed control in this setting was
considered in [7], while [11,12] consider also parametric versions of the opacity
problems, in which timing parameters [4] can be used in order to make the system
execution-time opaque. Timed control in this setting was considered in [8].

Finally, a very recent paper (and written concurrently) [6] addresses opac-
ity in the one-clock setting, with additional variants regarding current-location
timed opacity and initial-location timed opacity. Our result regarding decidabil-
ity over discrete time (Theorem 7) matches their result (see Remark 4)—we
also provide exact complexity. Furthermore, our respective seemingly contradic-
tory results on one-clock TAs without ε-transitions (we prove decidability, while
undecidability is proved in [6]) are in fact not contradictory due to the presence
of unobservable actions in [6] (see Remark 3).
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Regarding non-interference for TAs, some decidability results are proved in [9,
15,16], while control was considered in [17]. General security problems for TAs
are surveyed in [14].

1.2 Contributions

Considering the negative results from [19] there are mainly two directions: one
can consider more restrictive classes of automata, or one can limit the capabilities
of the attacker—we address both directions in this work.

We address here ∃-opacity (“there exists a pair of runs, one visiting and
one not visiting the private locations set, that cannot be distinguished”), weak
opacity (“for any run visiting the private locations set, there is another run not
visiting it and the two cannot be distinguished”) and full opacity (weak opacity,
but with the other direction holding as well).

Our attacker model is as follows: the attacker knows the TA modeling the
system and can observe (some) actions, but never gain access to the values of
the clocks, nor knows which locations are visited. Their goal is to deduce from
these observations whether a private location was visited.

Our set of contributions is threefold.

Inter-reducibility. Our first contribution is to prove that weak opacity and full
opacity are inter-reducible. This result, interesting per se, also allows us to con-
sider only one of both cases in the remainder of the paper.

Opacity in Subclasses of TAs. Throughout the second part of this paper (Sect. 5),
we consider the same attacker settings as in [19] but for natural subclasses of
TAs: first we deal with one-action TAs, then with one-clock TAs (both with and
without ε-transitions—a mostly technical consideration which makes a differ-
ence in decidability), TAs over discrete time, and a new subclass which we call
observable ERAs. Precisely, we show that:

1. The problem of ∃-opacity is decidable for general TAs and thus for all sub-
classes of TAs we consider as well (Sect. 5.1).

2. The problems of weak and full opacity are both undecidable for TAs with
only one action (Sect. 5.2) or two clocks (Sect. 5.3).

3. These two problems are also undecidable for TAs with a single clock, unless we
forbid ε-transitions, in which case the problems become decidable (Sect. 5.3).

4. These two problems are decidable for unrestricted TAs over discrete time
(Sect. 5.4), as well as for observable ERAs (Sect. 5.5).

These results overall build on existing results from the literature. They how-
ever allow us to draw a clear border between decidability and undecidability.
Moreover, we provide the exact complexity for most of the decidable results,
which in some cases, complexify the proofs.

As a proof ingredient for Sect. 5.4, we also show that language inclusion is
decidable for TAs over discrete time (a rather unsurprising—yet interesting—
result, of which we could not find a proof in the literature).
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Reducing the Attacker Power. Then, in the third part (Sect. 6), we introduce a
new approach in which we reduce the visibility of the attacker to a finite number
of actions occurring at the beginning of the run, on an unrestricted TA. This
models the case of an attacker with a limited attack budget, while consider-
ing the maximal class of TAs. This more elaborate result allows us to retrieve
decidability.

1.3 Outline

Section 2 recalls necessary preliminaries. Section 3 defines the problems of
interest. Section 4 proves inter-reducibility of weak and full opacity. Section 5
addresses opacity for subclasses of TAs, while Sect. 6 reduces the power of the
attacker to a finite set of observations. Section 7 concludes.

2 Preliminaries

We denote by N,Z,Q≥0,R≥0 the sets of non-negative integers, integers, non-
negative rationals and non-negative reals, respectively. If a and b are two integers
with a ≤ b, the set {a, a + 1, . . . , b − 1, b} is denoted by [[a; b]].

We let T be the domain of the time, which will be either non-negative reals
R≥0 (continuous-time semantics) or naturals N (discrete-time semantics). Unless
otherwise specified, we assume T = R≥0.

Clocks are real-valued variables that all evolve over time at the same rate.
Throughout this paper, we assume a set X = {x1 , . . . , xH } of clocks. A clock
valuation is a function μ : X → T, assigning a non-negative value to each clock.
We write 0 for the clock valuation assigning 0 to all clocks. Given a constant
d ∈ T, μ + d denotes the valuation s.t. (μ + d)(x ) = μ(x ) + d, for all x ∈ X. If
R is a subset of X and μ a clock valuation, we call reset of the clocks of R and
denote by [μ]R the valuation s.t. for all clock x ∈ X, [μ]R(x) = 0 if x ∈ R and
[μ]R(x) = μ(x) otherwise.

We assume �� ∈ {<,≤,=,≥, >}. A constraint C is a conjunction of inequal-
ities over X of the form x �� d, with d ∈ Z. Given C, we write μ |= C if the
expression obtained by replacing each x with μ(x ) in C evaluates to true.

2.1 Timed Automata

A TA is a finite automaton extended with a finite set of real-valued clocks. We
also add to the standard definition of TAs a special private locations set, which
is then used to define the subsequent opacity concepts.

Definition 1 (TA [2]). A TA A is a tuple A = (Σ, L, �0, Lpriv , Lf ,X, I, E),
where: 1) Σ is a finite set of actions, 2) L is a finite set of locations, �0 ∈ L is
the initial location, 3) Lpriv ⊆ L is a set of private locations, Lf ⊆ L is a set
of final locations, 4) X is a finite set of clocks, 5) I is the invariant, assigning
to every � ∈ L a constraint I(�) over X (called invariant), 6) E is a finite set
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Fig. 1. A TA example

of edges e = (�, g, a, R, �′) where �, �′ ∈ L are the source and target locations,
a ∈ Σ ∪ {ε} (where ε denotes an unobservable action), R ⊆ X is a set of clocks
to be reset, and g is a constraint over X (called guard).

Example 1. In Fig. 1, we give an example of a TA with three locations �0, �1
and �2, three edges, two observable actions {a, b}, and one clock x . �0 is the
initial location, �2 is the (unique) private location, and �1 is the (unique) final
location. �0 has an invariant “x ≤ 3” and the edge from �0 to �2 is labelled by
the unobservable action ε and has a guard “x ≥ 1”.

Definition 2 (Semantics of a TA). Given a TA A =
(
Σ, L, �0, Lpriv , Lf ,

X, I, E
)
, the semantics of A is given by the timed transition system TA =

(S, s0,Σ ∪ {ε} ∪ R≥0,→), with

1. S =
{
(�, μ) ∈ L × R

X

≥0 | μ |= I(�)
}
, s0 = (�0,0),

2. → ⊆ S × E × S ∪ S × R≥0 × S consists of the discrete and (continuous)
delay transition relations:
(a) discrete transitions: ((�, μ), e, (�′, μ′)) ∈ →, and we write (�, μ) e	→ (�′, μ′),

if (�, μ), (�′, μ′) ∈ S, e = (�, g, a, R, �′) ∈ E, μ′ = [μ]R, and μ |= g.
(b) delay transitions: ((�, μ), d, (�, μ+d)) ∈ →, and we write (�, μ) d	→ (�, μ+d),

if d ∈ R≥0 and ∀d′ ∈ [0, d], (�, μ + d′) ∈ S.

Moreover we write (�, μ)
(d,e)−→ (�′, μ′) for a combination of a delay and discrete

transition if ∃μ′′ : (�, μ) d	→ (�, μ′′) e	→ (�′, μ′).
Given a TA A with semantics (S, s0,Σ ∪ {ε} ∪ R≥0,→), we refer to the ele-

ments of S as the configurations of A. A (finite) run of A is an alternating
sequence of configurations of A and pairs of delays and edges starting from
the initial configuration s0 and ending in a final configuration (i.e. whose loca-
tion is final), of the form (�0, μ0), (d0, e0), (�1, μ1), . . . (�n, μn) for some n ∈ N,
with �n ∈ Lf and for i = 0, 1, . . . n − 1, �i /∈ Lf , ei ∈ E, di ∈ R≥0, and

(�i, μi)
(di,ei)−→ (�i+1, μi+1). A path of A is a prefix of a run ending with a config-

uration.

2.2 Region Automaton

We recall that the region automaton is obtained by quotienting the set of clock
valuations out by an equivalence relation � recalled below.
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Given a TA A and its set of clocks X, we define M : X → N the map that
associates to a clock x the greatest value to which the interpretations of x are
compared within the guards and invariants; if x appears in no constraint, we set
M(x ) = 0.

Given α ∈ R, we write �α
 and frac(α) respectively for the integral and
fractional parts of α.

Definition 3 (Equivalence relation � for valuations [2]). Let μ, μ′ be two
clock valuations (with values in R≥0). We say that μ and μ′ are equivalent,
denoted by μ � μ′ when, for each x ∈ X, either μ(x ) > M(x ) and μ′(x ) > M(x )
or the three following conditions hold:

1. �μ(x )
 = �μ′(x )
;
2. frac(μ(x )) = 0 if and only if frac(μ′(x )) = 0;
3. for each y ∈ X, frac(μ(x )) ≤ frac(μ(y)) if and only if frac(μ′(x )) ≤

frac(μ′(y)).

The equivalence relation is extended to the configurations of A: let s =
(�, μ) and s′ = (�′, μ′) be two configurations in A, then s � s′ if and only if � =
�′ and μ � μ′.

The equivalence class of a valuation μ is denoted [μ] and is called a clock
region, and the equivalence class of a configuration s = (�, μ) is denoted [s]
and called a region of A. Clock regions are denoted by the enumeration of the
constraints defining the equivalence class. Thus, values of a clock x that go
beyond M(x ) are merged and described in the regions by “x > M(x )”.

The set of regions of A is denoted by RA. These regions are of finite number:
this allows us to construct a finite “untimed” regular automaton, the region
automaton RAA. Locations of RAA are regions of A, and the transitions of
RAA convey the reachable valuations associated with each configuration in A.

To formalize the construction, we need to transform discrete and time-
elapsing transitions of A into transitions between the regions of A. To do that, we
define a “time-successor” relation that corresponds to time-elapsing transitions.

Definition 4 (Time-successor relation [11]). Let r = (�, [μ]), r′ = (�′, [μ′]) ∈
RA. We say that r′ is a time-successor of r when r �= r′, � = �′ and for each
configuration (�, μ) in r, there exists d ∈ R≥0 such that (�, μ+d) is in r′ and for
all d′ < d, (�, μ + d′) ∈ r ∪ r′.

A region r = (�, [μ]) is unbounded when, for all x in X and all μ′ ∈ [μ],
μ′(x ) > M(x ).

Definition 5 (Region automaton [2]). Given a TA A =
(
Σ, L, �0, Lpriv ,

Lf ,X, I, E
)
, the region automaton is the tuple RAA = (ΣR ,R, r0,Rf , ER)

where 1) ΣR = Σ ∪ {ε}; 2) R = RA; 3) r0 = [s0]; 4) Rf is the set of regions
whose first component is a final location �f ∈ Lf ; 5) i) (discrete transitions) For
every r = (�, [μ]) with � /∈ Lf , r′ = (�′, [μ′]) ∈ RA and a ∈ Σ ∪ {ε}:

(r, a, r′) ∈ ER if ∃μ′′ ∈ [μ],∃μ′′′ ∈ [μ′], (�, μ′′) e	→ (�′, μ′′′)
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with e = (�, g, a,R, �′) ∈ E.
ii) (delay transitions) For every r = (�, [μ]) with � /∈ Lf , r′ ∈ RA:

(r, ε, r′) ∈ ER if r′ is a time-successor of r or if r = r′ is unbounded.

As in TAs, a run of RAA is an alternating sequence of regions of RAA
and actions starting from the initial region r0 and ending in a final region, of
the form r0, a0, r1, a1, . . . rn−1, an−1, rn for some n ∈ N, with rn ∈ Rf and for
i ∈ [[0;n − 1]], ri /∈ Rf , and (ri, ai, ri+1) ∈ ER . A path of RAA is a prefix of
a run ending with a region and the trace of a path of RAA is the sequence of
actions (ε excluded) contained in this path.

3 Opacity Problems in Timed Automata

3.1 Timed Words, Private and Public Runs

Given a TA A and a run ρ = (�0, μ0), (d0, e0), (�1, μ1), . . . , (�n, μn) on A, we say
that Lpriv is visited in ρ if there exists m ∈ N such that �m ∈ Lpriv . We denote
by Visitpriv (A) the set of runs visiting Lpriv , and refer to them as private runs.
Conversely, we say that Lpriv is avoided in ρ if the run ρ does not visit Lpriv .
We denote the set of runs avoiding Lpriv by Visitpriv (A), referring to them as
public runs.

A timed word is a sequence of pairs made up of an action and a times-
tamp in R≥0, with the timestamps being non-decreasing over the sequence.
We denote by TW ∗(Σ) the set of all finite timed words over the alpha-
bet Σ. A run ρ on a TA A defines a timed word: if ρ is of the form
(�0, μ0), (d0, e0), (�1, μ1), . . . , (�n, μn) where for each i ∈ [[0;n − 1]], ei =
(�i, gi, ai, Ri, �i+1) and ai ∈ Σ ∪ {ε}, then it generates the timed word

(aj0 ,
j0∑

i=0

di)(aj1 ,
j1∑

i=0

di) · · · (ajm ,
jm∑

i=0

di), where j0 < j1 < · · · < jm and

{jk | k ∈ [[0;m]]} = {i ∈ [[0;n − 1]] | ai �= ε}. We denote by Tr(ρ) and call trace
of ρ the timed word generated by the run ρ and, by extension, given a set of
runs Ω, we denote by Tr(Ω) the set of the traces of runs in Ω.

The set of timed words recognized by a TA A is the set of traces generated
by its runs, Tr(Visitpriv (A) ∪ Visitpriv (A)) (thus a subset of (Σ × R≥0)∗). To
shorten these notations, we use Tr(A) for the set of timed words recognized
by A, also called language of A. Similarly, we use Trpriv (A) = Tr(Visitpriv (A))
to denote the set of traces of private runs, and Trpriv (A) = Tr(Visitpriv (A)) for
the set of traces of public runs.

In Cassez’s original definition [19], actions were partitioned into two sets,
depending on whether an attacker could observe them or not. For simplicity,
here we replaced all unobservable transition in A by ε-transitions. Projecting
the sequence of actions in a run onto the observable actions, as done by Cassez,
is equivalent to replacing these actions by ε and taking the trace of the run.
Therefore, with respect to opacity, our model is equivalent to [19].
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3.2 Defining Timed Opacity

In this section, a definition of timed opacity based on the one from [19] is intro-
duced, with three variants inspired by [10]: existential, full and weak opacity. If
the attacker observes a set of runs of the system (i.e. observes their associated
traces), we do not want them to deduce whether Lpriv was visited or not during
these observed runs. Opacity holds when the traces can be produced by both
private and public runs.

We are thus first interested in the existence of an opaque trace produced
by the TA, that is, a trace that cannot allow the attacker to decide whether it
was generated by a private or a public run. ∃-opacity, which can be seen as the
weakest form of opacity, is useful to check if there is at least one opaque trace;
if not, the system cannot be made opaque by restraining the behaviors.

Definition 6 (∃-opacity). A TA A is ∃-opaque if Trpriv (A) ∩ Trpriv (A) �= ∅.
∃-opacity decision problem:
Input: A TA A
Problem: Is A ∃-opaque?

Ideally and for a stronger security of the system, one can ask the system to be
opaque for all possible traces of the system: a TA A is fully opaque whenever for
any trace in Tr(A), it is not possible to deduce whether the run that generated
this trace visited Lpriv or not. Sometimes, a weaker notion is sufficient to ensure
the required security in the system, i.e. when the compromising information
solely comes from the identification of the private runs.

Definition 7 (Full and weak opacity). A TA A is fully opaque if
Trpriv (A) = Trpriv (A). A TA A is weakly opaque if Trpriv (A) ⊆ Trpriv (A).

Full (resp. weak) opacity decision problem:
Input: A TA A
Problem: Is A fully (resp. weakly) opaque?

Example 2. The TA A depicted in Fig. 1 is ∃-opaque and weakly opaque but not
fully opaque. Indeed,

Trpriv (A) =
{
(a, τ1) · · · (a, τn)(b, τn+1) | n ∈ N ∧ ∀i ∈ [[1, n]], τi ≤ τi+1 ≤ 2 ∧ τn+1 ≥ 1

}

Trpriv (A) =
{
(a, τ1) · · · (a, τn)(b, τn+1) | n ∈ N ∧ ∀i ∈ [[1, n]], τi ≤ τi+1 ≤ 3

}

This TA verifies Trpriv (A) ⊆ Trpriv (A) and Trpriv (A) ∩ Trpriv (A) �= ∅ since
(b, 1.5) ∈ Trpriv (A).

4 Inter-reducibility of Weak and Full Opacity

In this section, we prove a new result relating weak and full opacity (Sect. 4.2).
To this end, we first introduce in Sect. 4.1 a construction—that will also be useful
to prove our subsequent results in Sects. 5 and 6.
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4.1 Apriv and Apub

First, we need a construction of two TAs Apriv and Apub that recognize timed
words produced respectively by private and public runs of a given TA A.

The public runs TA Apub is the easiest to build: it suffices to remove the
private locations from A to eliminate every private run in the system. (See
formal definition in Definition 11 in [13, Appendix A].)

The private runs TA Apriv is obtained by duplicating all locations and transi-
tions of A: one copy AS corresponds to the paths that already visited the private
locations set, and the other copy AS̄ corresponds to the paths that did not (this
is a usual way to encode a Boolean, here “Lpriv was visited”, in the locations
of a TA). For each private location �priv in A we copy all transitions leading
to the copy of �priv in AS̄ and redirect them to the copy of �priv in AS . The
initial location is the one from AS̄ and the final locations are the ones from AS .
Hence all runs need to go from AS̄ to AS before reaching a final location, which
requires visiting a private location.

Definition 8 (Private runs TA Apriv). Let A =
(
Σ, L, �0, Lpriv , Lf ,X, I,

E
)
be a TA. The private runs TA Apriv = (Σ, LS � LS̄ , �S̄0 , LS

priv , LS
f ,X, I ′, E′)

is defined as follows:

1. LS = {�S | � ∈ L} and LS̄ = {�S̄ | � ∈ L}.
2. LS

f = {�Sf | �f ∈ Lf} is the set of final locations, and LS
priv = {�Spriv | �priv ∈

Lpriv} is the set of private locations;
3. I ′ is defined such as I ′(�S) = I ′(�S̄) = I(�)
4. E′ = ES � ES̄ � ES̄→S where ES and ES̄ are the two disjoint copies of E

respectively associated with the sets of locations LS and LS̄, and ES̄→S is a
copy of the set of all transitions that go toward LS̄

priv where the target location
�S̄priv has been changed into �Spriv . More formally:

ES =
{
(�S , g, a,R, �′S) | (�, g, a,R, �′) ∈ E

}

ES̄ =
{
(�S̄ , g, a,R, �′S̄) | (�, g, a,R, �′) ∈ E

}

ES̄→S =
{
(�S̄ , g, a,R, �Spriv ) | (�, g, a,R, �priv ) ∈ E

}
.

Example 3. We illustrate these constructions in Fig. 2 with A from Fig. 1.

The languages of Apriv and Apub are respectively Trpriv (A) and Trpriv (A).

Remark 1. By a minor modification on Apriv , one can build a TA Amemo that
recognizes exactly the same language as A and that stores in each location
whether the private locations set has been visited. To do so, we add the set {�S̄f |
�f ∈ Lf} to the set of final locations in Apriv and we remove each �S̄priv ∈ LS̄

priv

from LS̄ in the same way as we did in Apub : the private locations of Amemo are
exactly those of Apriv . Notably, A is weakly (resp. fully) opaque if and only if
Amemo is weakly (resp. fully) opaque.
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Fig. 2. Apub and Apriv with the example from Fig. 1

4.2 Inter-reducibility Proof

While the distinction between weak and full notions of opacity can lead to mean-
ingful changes [10], within our framework both associated problems are inter-
reducible.

Theorem 1. The weak opacity decision problem and the full opacity decision
problem are inter-reducible.

Proof. Let us first show that the full opacity decision problem reduces to the
weak opacity decision problem. Let A be a TA. In order to test whether A is fully
opaque, we can test both inclusions: Trpriv (A) ⊆ Trpriv (A) and Trpriv (A) ⊇
Trpriv (A). The first inclusion can be decided directly by testing whether A is
weakly opaque. In order to test the second inclusion, we need to build a TA
B where private and public runs are inverted. To do so, we first build Apub

and Apriv and then define B as the TA constituted of Apub and Apriv as well
as two new locations �′

0 and �′
priv . The location �′

0 is the initial location of B
and �′

priv is the only private location. For x ∈ X, both �′
0 and �′

priv have the
invariant x = 0, ensuring no time may elapse in those locations. From �′

0, with a
transition labeled by ε, one may reach either the initial location of Apriv (�S0 ) or
�′
priv , from which an ε-transition leads to the initial location of Apub (�0). The

final locations of B are the final locations of Apub and Apriv . The public runs
of B are the ones starting in �′

0, going immediately to �S0 , and then following a
run of Apriv until a final location of Apriv is reached. As the initial transition is
labeled by ε, we have Trpriv (B) = Trpriv (A). Similarly, the private runs of B are
the ones starting in �′

0, going immediately to �′
priv followed immediately by going

to �S0 , and then follows a run of Apub until a final location of Apub is reached.
As the two initial transitions are labeled by ε, we have Trpriv (B) = Trpriv (A).
Hence, A is fully opaque if and only if A and B are weakly opaque.

Let us now show the converse reduction. Let A be a TA. We will define a TA B
such that B is fully opaque if and only if A is weakly opaque. To do so, we want
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that Trpriv (B) = Trpriv (A) and Trpriv (B) = Trpriv (A) ∪ Trpriv (A). Indeed, if
these equalities hold, Trpriv (B) = Trpriv (B) would be equivalent to Trpriv (A) =
Trpriv (A) ∪ Trpriv (A) which holds if and only if Trpriv (A) ⊆ Trpriv (A). As for
the first reduction, B contains a copy of Apub and Apriv as well as two new
locations �′

0 and �′
priv . The location �′

0 is the initial location of B and �′
priv is the

only private location. For x ∈ X, both �′
0 and �′

priv have the invariant x = 0,
ensuring no time may elapse in those locations. From �′

0, with a transition labeled
by ε, one may reach either the initial location of Apub (�S0 ) or �′

priv , from which
an ε-transition leads either to �S0 or to the initial location of Apub (�0). The final
locations of B are the final locations of Apub and Apriv . The public runs of B
are the ones starting in �′

0, going immediately to �0, and then following a run of
Apub until a final location of Apub is reached. As the initial transition is labeled
by ε, we have Trpriv (B) = Trpriv (A). Similarly, the private runs of B are the
ones starting in �′

0, going immediately to �′
priv followed immediately by going to

�S0 followed by a run of Apriv , or to �0, followed by a run of Apub until a final
location of Apub is reached. As the two initial transitions are labeled by ε, we
have Trpriv (B) = Trpriv (A) ∪Trpriv (A). Hence, A is weakly opaque if and only
if B is fully opaque. ��

5 Opacity Problems for Subclasses of Timed Automata

In this section, we consider the decidability status and complexities of the three
opacity problems presented in Sect. 3 for several subclasses of TAs: TAs with one
clock, TAs with one action, TAs under discrete time and observable ERAs. We
first show the decidability of the ∃-opacity problem in the general case. Then,
we focus on each class of TAs listed above to study weak and full opacity.

5.1 ∃-Opacity Problem

We show here (see [13, Appendix B]) that in general the ∃-opacity problem is
PSPACE-complete relying on the reachability problem in TAs, which is known
to be PSPACE-complete [2] as well, even for TAs with two clocks [21]. This
theorem considers multiple subclasses of TAs which we will describe more in
depth in future sections.

Theorem 2. Given a TA A, deciding the ∃-opacity problem for A is PSPACE-
complete, even when restricting A to be a one-action TA, discrete-time TA, an
oERA1, or a single clock TA where integers appearing in guards are given in
binary.

If the number of clocks in A is fixed and integers appearing in guards are
given in unary, the ∃-opacity problem is in NLOGSPACE.

1 See Sect. 5.5.
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5.2 Timed Automata with a Single Action

Recall that the universality problem consists in deciding whether a TA A accepts
the set of all timed words. In [25], it is shown that the class of one-action TAs is
one of the simplest cases for which the universality problem is undecidable among
TAs. Therefore, this gives the intuition (see [13, Appendix C] for proof) that
the weak and full opacity problems are undecidable as well for one-action TAs
(|Σ| = 1).

Theorem 3. The full and weak opacity problems for TAs with one action are
undecidable.

Remark 2. The problems of execution-time opacity introduced in [10] are a
particular decidable subcase of these undecidable opacity problems with one-
action TAs. Indeed, the execution time is equivalent to a unique timestamp
associated with the last action of the system.

5.3 Timed Automata with a Single Clock

Following the same reasoning as in Sect. 5.2 (based on a different existing result
on TAs), we show that full opacity is undecidable for one-clock TAs.

Theorem 4. The full and weak opacity problems for one-clock TAs are unde-
cidable.

Proof. By reusing the same proof argument as in Theorem 3, using the fact that
universality for one-clock TAs (with ε-transitions) is undecidable [1].

Without ε-Transitions. We now prove that the weak and full opacity problems
become both decidable in the context of one-clock TAs (|X| = 1) without ε-
transitions, relying on the fact that the language inclusion problem for one-
clock TAs without ε-transitions is decidable [25].

By definition, a TA is weakly opaque if Trpriv (A) is included in Trpriv (A).
As Trpriv (A) and Trpriv (A) are respectively recognized by Apriv and Apub , the
decidability of the weak opacity problem is directly obtained from the decidabil-
ity of the inclusion of two languages. Full opacity follows immediately, from the
bidirectional language inclusion.

Theorem 5. Full and weak opacity are decidable for one-clock TAs without ε-
transitions.

Note however that, while decidable, this problem cannot be effectively
solved as the algorithm given by [25] is non-primitive recursive. Moreover, this
bound is tight as shown in [1]. Hence, by imitating the approach of Theorem 3,
one can reduce the language inclusion problem to the weak opacity, and thus
show the complexity is tight for weak and full opacity as well.
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Remark 3. This result might seem to contradict the result of a concurrently
written paper [6] that proves undecidability of (language-based) opacity for one-
clock TAs without ε-transitions—but it does not. The discrepancy comes from
the fact that our attacker observes all actions (the unobservable actions are
encoded into ε-transitions), while their setting considers unobservable actions—
which can act as ε-transitions even in the absence of syntactic ε-transitions.

Now, due to the undecidability of language universality for TAs with at
least two clocks [25, Theorem 21], we can prove the following with the same
construction as in Theorem 3:

Theorem 6. Full and weak opacity are undecidable for TAs with ≥ 2 clocks.

5.4 Timed Automata over Discrete Time

In the general case, clocks are real-valued variables, with valuations thus rang-
ing over T = R≥0. TAs over discrete time however restrict the clock’s behavior
to valuations over T = N. Since the arguments used in [2] to prove the unde-
cidability of the universality problem in TAs rely on continuous time, this proof
cannot be used to establish undecidability of opacity over discrete time. In fact,
relying on the region automaton (defined in Sect. 2.2) over discrete time and
classical results on finite regular automata, we show decidability of the opacity
problems as well as their exact complexity.

If μ, μ′ are two discrete clock valuations (i.e. with values in N), the definition
of � from Sect. 2.2 can be simplified into: μ � μ′ if and only if for each x ∈ X,
either μ(x ) = μ′(x ) or μ(x ) > M(x ) and μ′(x ) > M(x ).

In continuous time, for each run of the TA, there is a unique corresponding
run of the region automaton. In discrete time, thanks to the simplified form of
the definition of �, the converse statement that a run of the region automaton
corresponds to a unique run of the TA nearly holds. Loss of information however
remains when every clock goes beyond their maximum constant, as time elapsing
is not measured beyond this point. In order to measure it, we add a letter t (for
ticks) which occurs each time that an (integral) time unit passes in the region
automaton. This change can be operated directly on the TA A so that the
correspondence between paths of A and RAA becomes immediate.

More precisely, we add a clock z and add self-loop transitions et = (�, (z =
1), t, {z}, �) on each location � ∈ L of A. We also add the guard “z = 0” to each
discrete transition of A.

We illustrate the resulting TA on a simple example in Fig. 3. We depict a
discrete-time TA A, its transformation by the procedure we just described and
finally its region automaton RAA (over discrete time).

With this construction, time information becomes superfluous in the TA as it
can be deduced from the number of ticks that were produced, which also appears
within a path of the region automaton. For instance, consider the run on the A
of Fig. 3a that remains four time units in �0 before going to �f . The timed word
(a, 4) on the original TA A becomes (t, 1)(t, 2)(t, 3)(t, 4)(a, 4) in our transformed
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Fig. 3. A discrete-time region automaton example

TA. The untimed word obtained in RAA is tttta, which means that four ticks
occurred before the action a was produced. From this information, the original
timed word (a, 4) can be reconstructed. In the rest of this subsection, we only
consider TAs enhanced with ticks. From the previous discussion, we have (see
[13, Appendix D]):

Lemma 1. The language of a discrete-time TA and the language of its region
automaton are in bijection.

Thus, we show that the language inclusion problem for discrete-time TAs can
be reduced to its decidable equivalent for finite regular automata.

Proposition 1. Language inclusion in discrete-time TAs is EXPSPACE-
complete.

We can then adapt this result to the weak and full opacity problems in a
similar way as done in Sect. 5.3.

Theorem 7. Both weak and full opacity of discrete-time TAs are EXPSPACE-
complete.

Remark 4. Two very recent works [6,23] concurrently established decidability
of the opacity of TAs over discrete time. Our main distinct contribution lies in
establishing the exact complexity of the problems.

5.5 Observable Event-Recording Automata

In [19], the opacity problems were shown to be undecidable for Event-Recording
Automata (ERAs) [3], a subclass of TAs where every clock x is associated with
a specific event ax and x is reset on a transition if and only if this transition
is labeled by ax. Due to this, the valuations of clocks are entirely determined
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by the duration since the last occurrence of the associated events. One of the
main interest of ERAs is that they are determinizable [3]. This determinization
is carried out through the standard subset construction.

The undecidability result from [19] on ERAs required to make the events ax

unobservable. Hence, in our framework they would be replaced by ε-transitions.
We define observable ERAs (oERAs) as ERAs where the actions resetting the
clocks must be observable. This means that the information required for the
determinization now belongs to the trace that is observed.

Given an oERA A, we can thus build through the subset construction a TA
DetA such that any path ρ in A corresponds to a path ρD in DetA with the
same trace and ending in a location labeled by the set of all the locations of A
that can be reached with a run that has the same trace as ρ. This information,
combined with the construction of Amemo (Remark 1) which stores in the state
of the TA whether the private location was visited or not, provides the following
result (see [13, Appendix E]).

Theorem 8. Both weak and full opacity are PSPACE-complete for oERAs.

6 Opacity with Limited Attacker Budget

One of the causes for the undecidability of the opacity problems in [19] stems
from the unbounded memory the attacker might require to remember a run
of the TA. As a consequence, one can wonder whether the opacity problems
remain undecidable when the attacker performs only a finite number of obser-
vations. This models the case of an attacker with a limited attack budget. In
this section, we prove that the weak and full opacity problems become decidable
whenever, given N ∈ N, the attacker only observes the first N actions (with
their timestamps). To the best of our knowledge, this is i) the second result of
the literature (after [12]) providing a decidable opacity result for the full class of
TAs over dense time, and ii) the first result limiting the number of observations
of an attacker in the context of opacity for TAs.

For instance, if (a, 1.2)(b, 1.4)(b, 1.5)(a, 2.1) is the trace of a public run of the
system, and N = 2, then the attacker only observes the trace (a, 1.2)(b, 1.4).
If (a, 1.2)(b, 1.4)(c, 1.6) is the trace of a private run, the trace observed by the
attacker is (a, 1.2)(b, 1.4) again and the attacker cannot conclude whether a
private run occurred or not.

Formally, and in order to define new variants of opacity representing this
framework, given a TA A, we define a new TA (depicted in Fig. 4) which emulates
the behavior of A up to the Nth observation. This TA is an unfolding of A with
N +1 copies of A, where ε-transitions are taken within each copy, and transitions
with an observable action lead to the next copy. A run ends when either a final
location or the final copy is reached.

Definition 9 (N-observation unfolding of a TA). Let A =
(
Σ, L, �0, Lpriv ,

Lf ,X, I, E
)

be a TA and let N ∈ N. We call N -unfolding of A the TA
UnfoldN (A) = (Σ, L′, �00, L

′
priv , L′

f ,X, I ′, E′) where
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Fig. 4. The construction of an N -observation unfolded TA

1. L′ =
N⋃

i=0

Li where the sets Li are N+1 disjoint copies of L where each location

� ∈ L has been renamed �i ∈ Li: for 0 ≤ i ≤ N , Li = {�i | � ∈ L};
2. �00 ∈ L0 is the initial location;

3. L′
priv =

N−1⋃

i=0

Li
priv where Li

priv are the copies within Li of the private locations

of A;

4. L′
f = (

N⋃

i=0

Li
f )∪LN where Li

priv are the copies within Li of the final locations

of A;
5. I ′(�i) = I(�) for l ∈ L and i ≤ N extends I to each Li;

6. E′ =
N−1⋃

i=0

Ei ∪ Ei→i+1 is the set of transitions where, given 0 ≤ i < N

– Ei = {(�i, ε, g, R, �′i) | (�, ε, g, R, �′) ∈ E};
– Ei→i+1 = {(�i, a, g, R, �′i+1) | (�, a, g,R, �′) ∈ E ∧ a ∈ Σ}.

Definition 10 (Opacity w.r.t. N observations). Let A be a TA and let
N ∈ N. We say that A is weakly (resp. fully, ∃-) opaque w.r.t. N observations
when UnfoldN (A) is weakly (resp. fully, ∃-) opaque.

We now state our main result. The proof is quite technical, so we only give
a high-level sketch. The full proof can be found in [13, Appendix F].

Theorem 9. The problem of deciding, given a TA A and N ∈ N, whether A is
∃-opaque w.r.t. N observations is PSPACE-complete.

The problems of weak or full opacity w.r.t. N observations are in 2-
EXPSPACE.

Proof (sketch). ∃-opacity can be checked in PSPACEthrough the same approach
as Theorem 2. Indeed, even if N is given in binary, and thus UnfoldN (A) is of
exponential size, the region automaton of UnfoldN (A) remains simply exponen-
tial in the size of A. Hardness can be achieved with N = 0 with the same method
as Theorem 2.

Concerning the problems of weak and full opacity w.r.t. N observations, as
in Sect. 5.4, our goal is to rely on the region automaton to translate the opacity
problems from the TA to another problem on a finite automaton. However, there
is no immediate correspondence between runs of the TA and runs of the region
automaton, leading to a more involved proof.
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More precisely, given a TA A = (Σ, L, �0, Lpriv , Lf ,X, I, E) and N ∈ N,
we build the unfolding of the TA Amemo described in Remark 1. Recall that
Amemo recognizes the same language as A but stores within the locations the
information whether Lpriv was visited. As such, Amemo has the same opacity
properties as A, so we can consider UnfoldN (Amemo) instead of UnfoldN (A) to
study the opacity of A.

Additionally, we enrich this TA with ticks. In Sect. 5.4, we added a single
tick to the automaton which counted the time elapsed since the start of the run.
Here, the TA includes as well, for each 0 < k ≤ N , a tick clock counting the
time elapsed since the kth observation. As multiple ticks may need to occur at
the same time, we develop the alphabet of ticks to describe the set of tick clocks
that need to be reset, i.e. the tick t{k1,...,km} is produced by the TA if for every
0 ≤ i ≤ m, the kith observation (or the start of the run if ki = 0) occurred an
integer number of time units before.

Note that the addition of these ticks immediately uses the assumption that
only N actions are observed.

In the new ticked automaton, we will establish a correspondence between
runs of the TA and paths of the region automaton, allowing us to reduce the
opacity problems to non-reachability of bad states in the determinization of the
region automaton, implying decidability.

Considering the complexity, the unfolding of the TA, assuming N is in binary,
is exponential in the number of states. Adding the ticks means adding an expo-
nential number of clocks as well. Hence the region automaton is doubly exponen-
tial in the original TA, and its determinization is triply exponential. Reachability
being in NLOGSPACEimplies the 2-EXPSPACEalgorithm.

A full proof with all technical details can be found in [13, Appendix F]. ��

Table 1. Summary of Sect. 5 (
√

= decidability, × = undecidability)

Subclass ∃-opacity weak opacity full opacity

|Σ| = 1 ×Theorem 3

|X| = 1 without ε-transitions
√

Theorem 5 (non-primitive recursive-c)

|X| = 1
√

Theorem 2 ×Theorem 4

|X| = 2 (PSPACE-c) ×Theorem 6

T = N
√

Theorem 7 (EXPSPACE-c)

oERAs
√

Theorem 8 (PSPACE-c)

7 Conclusion and Perspectives

In this paper, we addressed three definitions of opacity on subclasses of TAs, to
circumvent the undecidability from [19]. We first proved the inter-reducibility of
weak and full opacity. Then, while undecidability remains for one-action TAs,
we retrieve decidability for one-clock TAs without ε-transitions, or over discrete
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time, or for observable ERAs. Our result for one-clock TAs without ε-transitions
is tight, since we showed that increasing the number of clocks or adding ε-
transitions leads to undecidability. Finally, we studied the case of an attacker
with an observational power with a limited budget, i.e. that can only perform a
finite set of observations. We proved this latter case to be decidable on the full
TA formalism. We summarize the results from Sect. 5 in Table 1.

Future Work. Perspectives include being able to build a controller to ensure
a TA is opaque, as well as investigating parametric versions of these problems,
where timing constants considered as parameters (à la [4]) can be tuned to ensure
opacity.

Finally, our result in Sect. 6 considers an attacker with a fixed attack budget;
an interesting future work would be to derive a maximum attack budget such
that the system remains opaque.
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Abstract. Clock-dependent probabilistic timed automata extend prob-
abilistic timed automata by letting the probabilities of discrete transi-
tions depend on the exact values of clock variables. The probabilistic
reachability problem for clock-dependent probabilistic timed automata
has been shown previously to be undecidable. We consider a subclass
with one clock and in which nondeterministic choice is made in a mem-
oryless fashion, i.e., nondeterministic choice depends the current state
only. We show that, for this subclass, the reachability problem can be
solved by constructing and analysing a finite-state parametric Markov
chain using established methods.

Keywords: Probabilistic model checking · Timed automata ·
Parametric Markov chains

1 Introduction

The development of complex systems can benefit from automatic verification
techniques such as model checking. In a number of application contexts, it is
important to reason not just about qualitative aspects of the system (such as
reaching an error state, or completing a task) but also quantitative aspects (such
as the likelihood of reaching an error state, or whether a task can be completed
within a certain deadline). In this paper, we consider probabilistic timed systems,
for which the modelling of probabilities and timing aspects of system behaviours
is key to their verification. We focus on probabilistic timed automata (PTAs)
[11,19,24], which combine aspects of timed automata [2] (clock variables, con-
straints on clocks, resets of clocks) and Markov decision processes (MDPs) [25]
(transitions are made using a combination of nondeterministic and probabilis-
tic choice), and which have been used to model a number of systems, ranging
from network protocols to scheduling problems with uncertainty. Two key char-
acteristics of PTAs are that (1) probabilistic choice is made over the discrete
components of the model, rather than over time durations or clock values, and
(2) the actual probability values used for probabilistic choices depend only on
whether clock values satisfy or not certain clock constraints. Characteristic (2)
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has been generalised in the formalism of clock-dependent probabilistic timed
automata (cdPTAs) [26], in which relationships between clock values and proba-
bilities used for probabilistic choice can be expressed. Hence cdPTAs are appro-
priate for modelling systems in which the likelihood of certain events changes
over time. For example, for a digital system interacting with humans, the prob-
ability of human error may increase over time [10]; in a smart farming system,
the greater the time taken to fill a trailer with grain, the higher the probability
that a human supervisor regards the trailer to be sufficiently full, but also the
higher the probability that the grain will be subsequently ruined by rain during
transit (this example adopts elements from [22]). Previous work has showed that
the reachability problem for cdPTAs, which asks whether there exists a resolu-
tion of nondeterministic choice such that a set of target states is reached with
probability at least λ ∈ (0, 1], is undecidable, although upper and lower bounds
on reachability probabilities can be computed by analysis of an approximate
finite-state MDP [26].

Another approach to the reachability problem for cdPTAs is to consider the
construction of a finite-state model that represents exactly the behaviour of a
cdPTA belonging to a certain subclass. An exact finite-state construction for the
subclass of cdPTAs that feature one clock variable and a requirement specifying
that the clock must be reset to 0 between probabilistic choices that depend on
the exact value of the clock, thereby guaranteeing the independence of those
probabilistic choices, has been presented in [27]. The formalism used for that
construction is interval Markov chains [13], in which intervals on probabilities
are given for each transition, representing uncertainty with regard to actual
probability with which transitions are made. The aforementioned requirement
on the independence of non-trivial clock dependencies, as used in [27], does
not allow a key characteristic of cdPTAs to be employed, namely the ability to
express situations of trade-offs between successive probabilistic choices.

This key characteristic is inherent to the cdPTA of Fig. 1, which models the
simple smart farming system described above. We adopt the usual conventions
for illustrating cdPTAs: locations are drawn as circles, probability distributions
are indicated by black boxes and the boxes’ outgoing edges, constraints on the
unique clock x label locations (invariant conditions) and edges from locations
to black boxes (guard conditions enabling the choice of probability distribu-
tions), and expressions determining probabilities of transitions are denoted by
grey boxes labelling edges from black boxes to locations (such edges may also
feature a clock reset denoted by {x}). The initial location F represents the trailer
being filled with grain, location T represents the trailer being in transit, loca-
tion S represents the trailer being under shelter at its destination, and location
✗ represents the failure of the system (either the human supervisor regards the
trailer to be insufficiently full or the grain is ruined by rain). The behaviour of
the cdPTA takes the following form. On entry to a location, a nondeterministic
choice is made regarding the amount of time that elapses while remaining in
that location. The value of the clock x increases by the chosen time delay. The
choice regarding the amount of time to elapse is constrained by the invariant
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Fig. 1. A 1c-cdPTA modelling a simple task with a trade-off.

condition of the location. After the chosen time delay, if the current value of the
clock satisfies the guard condition of one of the location’s outgoing edges, then
that edge can be chosen nondeterministically. A probabilistic choice is then made
according to the probability distribution that corresponds to the black box that
is the target of the chosen edge, where the probabilities regarding the subsequent
edge to traverse can depend on the current value of the clock. Traversing edges
and black boxes is instantaneous. Observe that in the cdPTA of Fig. 1, when
taking the transition to the right of the initial location F, the probability of
making a transition to location T increases as the value of the clock x increases
(the greater the time dedicated to filling the trailer with grain, the higher the
probability that the human supervisor is satisfied); however the probability of
subsequently making a transition to location S decreases as the value of the clock
x increases (the weather forecast indicates that the probability of the arrival of
rain increases until two time units have elapsed). Hence, the maximum proba-
bility of reaching location S from F, passing through T, is obtained by letting t
units of time elapse in F, then letting no time elapse in location T: we require
a framework that takes into account the interdependence of the probability of
both transitions along the path from F to S through T to reason about the
value of t that attains this maximum probability. As a final note, in order to
reason about the overall optimal behaviour of the cdPTA, we must also take
into account the lowermost edge from location F, which corresponds to filling
the trailer completely then waiting until the peak of the storm has passed (after
four time units), after which the probability of ruining the grain in transit is 9

10
regardless of the exact time delay chosen.

In this paper, as in [27], we construct an exact, finite-state abstraction of
a cdPTA with one clock (abbreviated as 1c-cdPTA). However, in contrast to
[27], we do not impose the restriction that the clock must be reset between the
transitions whose probability depends on the exact value of the clock. We use
parametric Markov chains (pMCs) [9,20] as a formalism for the exact, finite-
state abstraction. As in interval Markov chains, pMCs represent uncertainty
with regard to transition probabilities; however they also allow the expression
of dependencies between transition probabilities of different states. In order to
obtain a finite-state pMC, we require that the nondeterministic choices made in
the 1c-cdPTA are memoryless and finitely-uniform: the underlying infinite state
space of the 1c-cdPTA is partitioned into a finite number of equivalence classes
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(using the standard notion of regions from the literature of timed automata with
one clock [21]), and nondeterministic choices depend on the equivalence class of
the current state (rather than on the history of states visited). Our approach is
inspired by the precedent of [15] in the context of the use of pMCs for finite-
state control of partially-observable MDPs: in both approaches, nondeterministic
choices are represented by parameter values, and an instantiation of parameter
values corresponds to a finite-state strategy for resolving nondeterministic choice.
A novelty of this paper is to establish a relationship between the clock values
resulting from the elapse of time and parameters of the pMC. This relationship
requires comparison between parameters: in the example of Fig. 1, if the value
of the clock x is equal to v when location F is exited, then the value of x when
location T is exited must be at least v; this relationship between clock values is
carried over to the parameters of the pMC in order to represent faithfully the 1c-
cdPTA. As a consequence of the pMC construction and the results on pMCs of
[16], establishing whether there exists a memoryless and finitely-uniform strategy
for resolving nondeterministic choice of a 1c-cdPTA such that a set of target
states is reached with a probability at least some threshold λ ∈ (0, 1] is in ETR
(the complexity class of problems with a polynomial-time many-one reduction
to deciding membership in the existential theory of the reals).

Related work. Apart from the references given above, we also mention the fol-
lowing related work. A notion of uniformity of strategies based on a finite parti-
tioning of the state space of a timed automaton game has been presented in [7],
and inspired partly our notion of finitely-uniform strategies. Stochastic timed
automata [5] and 1 1

2 -player stochastic timed games [1,6] are variants of PTAs
with probabilistic choice over time delays (hence not exhibiting characteristic
(1) of PTAs described above).

2 Preliminaries

We use R to denote the set of real numbers, R≥0 to denote the set of non-negative
real numbers, Q to denote the set of rational numbers, and N to denote the set
of natural numbers. A (discrete) probability distribution over a countable set Q
is a function μ : Q → [0, 1] such that

∑
q∈Q μ(q) = 1. Let Dist(Q) be the set of

distributions over Q. For a (possibly uncountable) set Q and a function μ : Q →
[0, 1], we define support(μ) = {q ∈ Q | μ(q) > 0}. Then, for an uncountable set
Q, we define Dist(Q) to be the set of functions μ : Q → [0, 1] such that support(μ)
is a countable set and μ restricted to support(μ) is a distribution. Given a binary
function f : Q × Q → [0, 1] and element q ∈ Q, we denote by f(q, ·) : Q → [0, 1]
the unary function such that f(q, ·)(q′) = f(q, q′) for each q′ ∈ Q.

Let V be a finite set of real-valued variables called parameters. We use Q[V ]
to denote the set of rational polynomials over V with coefficients in Q. An
instantiation of V is a function u : V → R associating a real value with each
parameter in V . Given f ∈ Q[V ] and instantiation u of V , we denote by f [u] the
value obtained from f by substituting each p ∈ V by u(p). Given the function
g : Q → Q[V ] and an instantiation u of V , we denote by g[u] : Q → R the
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function such that g[u](q) = g(q)[u] for each q ∈ Q. An instantiation u of V is
distribution-inducing for g if g[u] ∈ Dist(Q).

Markov Chains and Markov Decision Processes. A Markov chain (MC)
C is a tuple (S, s̄,P) where S is a set of states with initial state s̄ ∈ S, and
P : S ×S → [0, 1] is a transition probability function such that P(s, ·) ∈ Dist(S)
for each state s ∈ S. An (infinite) path of MC C is an infinite sequence s0s1 · · ·
of states such that P(si, si+1) > 0 for all i ≥ 0. Given a path r = s0s1 · · · and
i ≥ 0, we let r(i) = si be the (i + 1)-th state along r. The set of paths of C
starting in initial state s̄ is denoted by PathsC . Similarly, a finite path of C is a
finite sequence r = s0s1 · · · sn such that P(si, si+1) > 0 for all 0 ≤ i < n. We let
r(i) = si for 0 ≤ i ≤ n be the (i+1)-th state along r, and let PathsC

∗ be the set of
finite paths of C starting in initial state s̄. Given a finite path r = s0s1 · · · sn−1sn

in PathsC
∗ , let PrC∗(r) = P(s0, s1) · . . . ·P(sn−1, sn). We can extend uniquely PrC∗

to obtain a probability measure PrC over PathsC (for more details, see [4]). Given
T ⊆ S, we define �T = {r ∈ PathsC(s̄) | ∃i ∈ N . r(i) ∈ T} as the set of infinite
paths of C such that some state of T is visited along the path. Hence PrC(�T )
denotes the probability that a state in T is visited from the initial state in C.

Let R ⊆ S × S be an equivalence relation on S, and let S/R be the set
of equivalence classes of R. Given C ∈ S/R, we let P(s, C) =

∑
s′∈C P(s, s′).

An equivalence R is a T -preserving probabilistic bisimulation on C if (s, s′) ∈ R
implies that (1) s ∈ T if and only if s′ ∈ T , and (2) P(s, C) = P(s′, C) for each
C ∈ S/R [23]. Let C1 = (S1, s̄1,P1) and C2 = (S2, s̄2,P2) be two DTMCs such
that S1 ∩ S2 = ∅, and let C1 
 C2 = (S1 ∪ S2 ∪ s̄, s̄,P), where (1) s̄ /∈ S1 ∪ S2,
(2) P(s, ·) = P1(s, ·) if s ∈ S1 and P(s, ·) = P2(s, ·) otherwise and (3) P(s̄, s̄1) =
λ and P(s̄, s̄2) = 1 − λ for some arbitrarily chosen λ ∈ (0, 1). For T ⊆ S and a
T -preserving probabilistic bisimulation R on C1 
 C2 such that (s̄1, s̄2) ∈ R, we
have PrC1(�T ) = PrC2(�T ) [3].

A Markov decision process (MDP) M = (S, s̄, A,Δ) comprises a set of states
S with an initial state s̄ ∈ S, a set of actions A, and a probabilistic transition
function Δ : S ×A → Dist(S)∪{⊥}. The symbol ⊥ represents the unavailability
of an action in a state, i.e., Δ(s, a) = ⊥ signifies that action a ∈ A is not
available in state s ∈ S. For each state s ∈ S, let A(s) = {a ∈ A | Δ(s, a) 
= ⊥},
and assume that A(s) 
= ∅, i.e., there is at least one available action in each
state. Transitions from state to state of an MDP are performed in two steps: if
the current state is s, the first step concerns a nondeterministic selection of an
action a ∈ A(s); the second step comprises a probabilistic choice, made according
to the distribution Δ(s, a), as to which state to make the transition (that is, a
transition to a state s′ ∈ S is made with probability Δ(s, a)(s′)). In general, the
sets of states and actions can be uncountable. We say that an MDP is finite if S
and A are finite sets. A(n infinite) path of an MDP M is a sequence s0a0s1a1 · · ·
such that ai ∈ A(si) and Δ(si, ai)(si+1) > 0 for all i ≥ 0. Given an infinite path
r = s0a0s1a1 · · · and i ≥ 0, we let r(i) = si be the (i + 1)-th state along r.
Let PathsM be the set of infinite paths of M starting in the initial state s̄.
A finite path is a sequence r = s0a0s1a1 · · · an−1sn such that ai ∈ A(si) and
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Δ(si, ai)(si+1) > 0 for all 0 ≤ i < n. Let last(r) = sn denote the final state of
r. For a ∈ A(sn) and s ∈ S such that Δ(sn, a)(s) > 0, we use ras to denote the
finite path s0a0s1a1 · · · an−1snas. Let PathsM

∗ be the set of finite paths of the
MDP M starting in the initial state s̄.

A strategy of M is a function σ : PathsM
∗ → ⋃

s∈S Dist(A(s)) such that
σ(r) ∈ Dist(A(last(r))) and |support(σ(r))| is finite, for all r ∈ PathsM

∗ . Let
ΣM be the set of strategies of the MDP M. We say that infinite path r =
s0a0s1a1 · · · is generated by σ if σ(s0a0s1a1 · · · ai−1si)(ai) > 0 for all i ∈ N.
Let Pathsσ be the set of paths generated by σ. The set Pathsσ

∗ of finite paths
generated by σ is defined similarly. Given a strategy σ ∈ ΣM, we can define a
countably infinite-state MC Cσ, called the induced MC of σ, that corresponds
to the behaviour of σ: we let Cσ = (Pathsσ

∗ , s̄,Pσ), where, for r, r′ ∈ Pathsσ
∗ ,

we have Pσ(r, r′) = σ(r)(a) · Δ(last(r), a)(s) if r′ = ras and a ∈ A(last(r)),
and Pσ(r, r′) = 0 otherwise. For simplicity, we write Prσ rather than PrC

σ

for
the probability measure associated with Cσ. Given T ⊆ S, and given the 1-to-1
relationship between (finite and infinite) paths of M generated by σ and paths
of Cσ, we write �T to denote the set of paths of Cσ that correspond to T being
visited in M; formally �T = {r ∈ PathsCσ | ∃i ∈ N . last(r(i)) ∈ T}. Hence
Prσ(�T ) denotes the probability of reaching the set T in M while following the
strategy σ. We consider whether there exists a strategy belonging to a particular
set of strategies such that the probability of reaching a certain set of states is
at least some threshold. More precisely, given MDP M = (S, s̄, A,Δ), strategy
set Σ′ ⊆ ΣM, target set T ⊆ S and threshold λ ∈ (0, 1], the (existential,
lower-bounded, non-strict) reachability problem for M, Σ′, T and λ is to decide
whether there exists a strategy σ ∈ Σ′ such that Prσ(�T ) ≥ λ.

Parametric Markov Chains. A parametric Markov chain (pMC) D = (S, s̄, V,
Δ) comprises a finite set of states S, initial state s̄ ∈ S, a finite set of parameters
V and a parametric transition function Δ : S × S → Q[V ]. When considering a
pMC D = (S, s̄, V,Δ), we consider only instantations of V that are distribution-
inducing for Δ(s, ·) for all states s ∈ S. Let InstD be the set of instantiations
for D, and we consider only pMCs for which InstD 
= ∅. Given instantiation
u ∈ InstD, we can observe that (S, s̄,Δ[u]) is an MC, which we denote by D[u].

We consider the following feasibility problem with respect to reachability for
pMCs. Given a pMC D = (S, s̄, V,Δ), set of instantiations U ⊆ InstD, target set
T ⊆ S and threshold λ ∈ (0, 1], the feasibility problem for D, U, T and λ is to
decide whether there exists an instantiation u ∈ U such that PrD[u](�T ) ≥ λ.

3 Clock-Dependent Probabilistic Timed Automata

We now recall the definition of clock-dependent probabilistic timed automata
[26], focussing on the subclass with one clock variable [27]. This clock variable
will be denoted by x. A clock valuation is a value v ∈ R≥0, interpreted as the
current value of clock x. Following the usual notational conventions for modelling
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formalisms based on timed automata, we use the powerset notation 2{x} to refer
to the set {{x}, ∅}, which we will use in the sequel to indicate whether the clock
is reset to 0 (denoted by {x}) or retains its current value (denoted by ∅). A
clock constraint is a conjunction of atomic formulae of the form x ∼ c, where
∼∈ {<,≤,≥, >} and c ∈ N. The set of clock constraints is defined as Ψ . A clock
valuation v satisfies a clock constraint ψ, denoted by v |= ψ, if ψ resolves to
true when substituting each occurrence of clock x with v.

Dependencies between clock values and transition probabilities will be
expressed using rational polynomials over x. We refer to functions of the form
g : Q → Q[{x}] as templates on Q, and use Templates(Q) to refer to the set of
such functions. Given a clock constraint ψ ∈ Ψ , a template g ∈ Templates(Q) is
a distribution template with respect to ψ if v is distribution-inducing for g for all
v ∈ R≥0 such that v |= ψ.

A clock-dependent probabilistic timed automaton with one-clock (1c-cdPTA)
A = (L, l̄, inv , prob) comprises the following components:

– a finite set L of locations with an initial location l̄ ∈ L;
– a function inv : L → Ψ associating an invariant condition with each location;
– a set prob ⊆ L × Ψ × Templates(2{x} × L) of probabilistic edges, containing

triples of the form (l, g, ℘), where l is the source location of the probabilistic
edge, g is a clock constraint called the guard of the probabilistic edge, and ℘
is a distribution template with respect to g ∧ inv(l).

Given a probabilistic edge p ∈ prob, we write src(p), grd(p) and tpl(p) for the
source location, guard and distribution template of p, respectively.

The behaviour of a 1c-cdPTA takes a similar form to that of a standard
(one-clock) probabilistic timed automaton [11,17,19]. A state of a 1c-cdPTA
is a pair comprising a location and a clock valuation satisfying the location’s
invariant condition, i.e., (l, v) ∈ L × R≥0 such that v |= inv(l). From a state
(l, v), a nondeterministically-chosen amount of time t ∈ R≥0 elapses, increasing
the value of the clock to ṽ = v+t. The current location’s invariant condition
inv(l) must remain satisfied continuously while time passes. A probabilistic edge
(l′, g, ℘) ∈ prob can then be chosen from state (l, ṽ) if l = l′ and the clock
constraint g is satisfied by ṽ. The choice of which such probabilistic edge to
take is nondeterministic. Once a probabilistic edge (l′, g, ℘) has been chosen, a
successor location, and whether to reset the clock to 0, is chosen probabilistically
according to the distribution ℘[ṽ]. For example, in the case of the 1c-cdPTA
of Fig. 1, from state (F, 0) (i.e., the location is F and the value of clock x is
equal to 0), a nondeterministic choice is made as to the amount of time to
elapse and which probabilistic edge to select. Consider the case in which delay
t ∈ (1, 2) elapses, increasing the value of x to ṽ = 0+t = t, following which the
uppermost probabilistic edge leaving F is traversed. The resulting state is (T, ṽ)
with probability ṽ − 1, and (✗, ṽ) with probability 2 − ṽ.

In order the simplify the definition of the semantics of 1c-cdPTAs, we make
a number of standard assumptions (see [27] for more details). Firstly, invariant
conditions bound the clock from above only: for each l ∈ L, the invariant con-
dition inv(l) is x ≤ c for some c ∈ N, or x < c for some c ∈ N \ {0}. Secondly,
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the guard of some probabilistic edge can always be satisfied, either in the cur-
rent state or by letting time elapse. This assumption is expressed by specifying
that the guard of some probabilistic edge is satisfied immediately prior to the
invariant condition becoming unsatisfied: formally, for each l ∈ L, there exists
p ∈ prob with src(p) = l and where grd(p) is such that (1) if inv(l) = (x ≤ c)
then c |= grd(p) (viewing c as a clock valuation), and (2) if inv(l) = (x < c) then
c− ε |= grd(p) for all ε ∈ (0, 1).1 Thirdly, target states resulting from probabilis-
tic edges satisfy their invariants: for each p ∈ prob, l ∈ L and v ∈ R≥0 such that
v |= g, if tpl(p)[v](∅, l) > 0 then v |= inv(l).

The semantics of the 1c-cdPTA A = (L, l̄, inv , prob) is the MDP [[A]] =
(S, s̄, A,Δ) where:

– S = {(l, v) ∈ L × R≥0 | v |= inv(l)};
– s̄ = (l̄, 0);
– A = R≥0 × prob;
– for (l, v) ∈ S, ṽ ∈ R≥0 and p ∈ prob such that (1) ṽ ≥ v, (2) ṽ |= grd(p)

and (3) w |= inv(l) for all v ≤ w ≤ ṽ, then we let Δ((l, v), (ṽ, p)) be the
distribution such that, for (l′, v′) ∈ S:

Δ((l, v), (ṽ, p))(l′, v′) =

⎧
⎪⎪⎨

⎪⎪⎩

tpl(p)[ṽ]({x}, l′) + tpl(p)[ṽ](∅, l′) if v′ = ṽ = 0
tpl(p)[ṽ](∅, l′) if v′ = ṽ > 0
tpl(p)[ṽ]({x}, l′) if v′ = 0, ṽ > 0
0 otherwise;

if conditions (1), (2) and (3) are not satisfied, we let Δ((l, v), (ṽ, p)) = ⊥.

The summation in the first case of the definition of Δ reflects the fact that, for
v′ = ṽ = 0, for obtaining v′ from ṽ, it is immaterial whether the clock is reset.

In the sequel, we consider reachability of a certain set of locations in the
1c-cdPTA. Let F ⊆ L be a set of locations, and let TF = {(l, v) ∈ S | l ∈ F} be
the set of states of [[A]] that have their location component in F . Hence, given
a strategy σ of [[A]], Prσ(�TF ) denotes the probability of reaching the set of
locations F under the strategy σ.

4 Translation from 1c-cdPTAs to pMCs

Memoryless Strategies for 1c-cdPTAs. Our notion of memoryless strate-
gies for 1c-cdPTAs, which we now present, consists of two aspects: firstly, such
strategies depend only on the current state of the 1c-cdPTA; secondly, there
exists a finite partition of the state space of the 1c-cdPTA such that, for each
class of the partition, strategies behave uniformly over all states in the class. In
order to define this partition, we use the notion of regions2 for timed automata
1 Note that the interval (0, 1) in condition (2) can be replaced by (0, λ) for any

λ ∈ (0, 1), because either all valuations in (c − 1, c) satisfy grd(p) or none do.
2 Note that sets of instantiations are often referred to as regions in the pMC literature

(for example, in [14]). Instead, in this paper, we adopt the notion of regions from
the timed automata literature.
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with one clock [21]. Then the behaviour (in terms of which clock value to let
time elapse to, and which probabilistic edge to take) of a memoryless strategy is
described as being the same for all states of each of the aforementioned regions.
The presence of such uniformity means that we are able to define a memoryless
strategy of a 1-cdPTA using a finite framework.

Let A = (L, l̄, inv , prob) be a 1c-cdPTA. Let Cst(A) be the set of con-
stants that are used in the guards of probabilistic edges and invariants
of A, and let B = Cst(A) ∪ {0}. We write B = {b0, b1, . . . , bk}, where
0 = b0 < b1 < . . . < bk. The set B defines the set of intervals IB =
{[b0, b0], (b0, b1), [b1, b1], · · · , [bk, bk], [bk,∞)}, i.e., IB is a partition of R≥0 into
subintervals with endpoints in B ∪ {∞}, and where each element of B has a
corresponding closed interval in IB comprising only that element. We define a
total order on IB in the following way: [b0, b0] < (b0, b1) < [b1, b1] < · · · <
[bk, bk] < [bk,∞). Let ψ be a guard of a probabilistic edge or an invari-
ant of A. By definition, for each B ∈ IB, either B ⊆ {v ∈ R≥0 | v |= ψ} or
B ∩ {v ∈ R≥0 | v |= ψ} = ∅ (either all valuations in B satisfy ψ or none do). We
write B |= ψ in the case of B ⊆ {v ∈ R≥0 | v |= ψ}.

The set of regions of A is defined as Regs = {(l, B) ∈ L × IB | B |= inv(l)}.
In the sequel, we will refer to a state (l, v) of [[A]] as belonging to a region (l′, B)
if l = l′ and v ∈ B. Given a region (l, B), the set of region successor actions
of (l, B), denoted by RegA(l, B), is defined as the set of pairs where the first
element of the pair is an interval B̃ that can be obtained from B by letting
time elapse (provided that B̃ does not exceed the upper bound enforced by the
invariant condition), and where the second element is a probabilistic edge with
source location l and guard which is satisfied by B̃. Formally, we let:

RegA(l, B) = {(B̃, p) ∈ IB × prob | src(p) = l ∧ B ≤ B̃ ∧ B̃ |= (grd(p) ∧ inv(l))}.

We now define, in two steps, our notion of memoryless strategies for 1c-
cdPTAs in two steps. First, we introduce region-based controllers which, given
a current region of the 1c-cdPTA, specify a distribution over region successor
actions, and, for each such action, also determine exactly which clock valuation is
attained by letting time elapse. An action mapping act : Regs → Dist(IB × prob)
for A is a function such that, for each (l, B) ∈ Regs and (B̃, p) ∈ IB × prob, if
act(l, B)(B̃, p) > 0 then (B̃, p) ∈ RegA(l, B). A time-elapse valuation mapping
val : Regs×IB×prob → R≥0 for A is a function such that the following conditions
are satisfied for each (l, B) ∈ Regs and (B̃, p) ∈ IB × prob:

– val((l, B), B̃, p) ∈ B̃ (the time-elapse valuation obtained from val belongs to
time-elapse interval B̃);

– for each l′ ∈ L and (B̃′, p′) ∈ IB × prob, if:
• tpl(p)[val((l, B), B̃, p)](∅, l′) > 0 (the probability of passing from (l, B)

to location l′ using region successor action (B̃, p) while not resetting the
clock is positive), and

• act(l, B)(B̃, p) > 0 and act(l′, B̃)(B̃′, p′) > 0 (act specifies that (B̃, p) can
be chosen from (l, B) and (B̃′, p′) can be chosen from (l′, B̃)),
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then val((l, B), B̃, p) ≤ val((l′, B̃), B̃′, p′) (val cannot specify that the clock’s
value decreases between successive transitions).

Then a region-based controller for A is defined as a pair (act, val) comprising an
action mapping act and a time-elapse valuation mapping val.

We can now use a region-based controller (act, val) to define an associated
strategy σact,val for the 1c-cdPTA A. Given a clock valuation v ∈ R≥0, we denote
by 〈[v]〉 the unique interval in IB that contains v. Let r ∈ Paths [[A]]

∗ be a finite
path of [[A]] and let (ṽ, p) ∈ R≥0 × prob. We will use (l, v) to denote last(r).
First note from the definition of the probabilistic transition function Δ of [[A]]
and RegA, if Δ(ṽ, p) 
= ⊥, then (〈[ṽ]〉, p) ∈ RegA(l, B). Then we let:

σact,val(r)(ṽ, p) =
{
act(l, 〈[v]〉)(〈[ṽ]〉, p) if ṽ = val((l, 〈[v]〉), 〈[ṽ]〉, p);
0 otherwise.

Note that σact,val is memoryless: its behaviour after a finite path r depends on
the region containing the final state of r. A strategy σ ∈ Σ[[A]] is a region-based
(memoryless) strategy if there exists a region-based controller (act, val) such
that σ = σact,val. Let Σrbc ⊆ Σ[[A]] be the set of region-based strategies of [[A]].
The region-based controller reachability problem for A, F ⊆ L and λ ∈ (0, 1] is
to determine whether there exists a region-based controller (act, val) for A such
that Prσ

act,val

(�TF ) ≥ λ. Note that this problem is equivalent to the reachability
problem for [[A]], Σrbc, TF and λ.

Translation from 1c-cdPTAs to pMCs. We now describe how a pMC cor-
responding to the 1c-cdPTA A can be defined, and show how feasability analysis
of this pMC can be used to establish the existence of a strategy that is obtained
from a region-based controller and that satisfies a reachability property. The
intuition is that the states of the pMC are regions of the 1-cdPTA, and that two
parameters are used for each region (l, B) ∈ Regs and region successor action
(B̃, p) ∈ RegA(l, B), where the first parameter p

(l,B)

(B̃,p)
refers to the probability

with which (B̃, p) is taken from states in (l, B), and the second parameter q
(l,B)

(B̃,p)

refers to the clock valuation in B̃ attained after letting time elapse when making
a transition from a state in (l, B) using the probabilistic edge p. The correspon-
dence between the first set of parameters described above and actions mappings,
and the second set of parameters with time-elapse valuation mappings, will allow
us to use the pMC to answer the region-based controller reachability problem
introduced above.

Let A = (L, l̄, inv , prob) be a 1c-cdPTA. The pMC induced from A is defined
as DA = (Regs, (l̄, [0, 0]), V A,ΔA), where:

– V A = {p
(l,B)

(B̃,p)
, q

(l,B)

(B̃,p)
| (l, B) ∈ Regs, (B̃, p) ∈ RegA(l, B)} is the set of param-

eters;
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Fig. 2. The pMC corresponding to the 1c-cdPTA of Fig. 1.

– the parametric transition function ΔA is such that, for (l, B), (l′, B′) ∈ SA,
we have:

ΔA((l, B), (l′, B′)) =
∑

(B̃,p)∈RegA(l,B)

Δ̂
A
((l, B), (B̃, p), (l′, B′)) ,

where, for (B̃, p) ∈ RegA(l, B), we have that Δ̂
A
((l, B), (B̃, p), (l′, B′)) equals:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p
(l,B)

(B̃,p)
· (tpl(p)[0]({x}, l′) + tpl(p)[0](∅, l′)) if B̃ = B′ = [0, 0],

p
(l,B)

B̃,p
· tpl(p)[q(l,B)

B̃,p
]({x}, l′) if B̃ > [0, 0], B′ = [0, 0],

p
(l,B)

B̃,p
· tpl(p)[q(l,B)

B̃,p
](∅, l′) if B̃ = B′ > [0, 0],

0 otherwise.

Observe that, given regions (l, B), (l′, B′) ∈ Regs and region successor action
(B̃, p) ∈ RegA(l, B), the expression Δ̂

A
((l, B), (B̃, p), (l′, B′)) is a rational poly-

nomial over V A describing the probability of making a translation from region
(l, B) to region (l′, B′) via region successor action (B̃, p).

In Fig. 2, we show the pMC corresponding to the 1c-cdPTA of Fig. 1. In
the following, we use p (p′, p′′, respectively) to refer to upper-left (upper-right,
bottom, respectively) probabilistic edge of Fig. 1. Parameter p1 corresponds to
p
(F,[0,0])
((1,2),p), whereas p2 corresponds to p

(F,[0,0])
((4,10),p′′), and p3 corresponds to p

(T,(1,2))
((1,2),p′).

Furthermore q1 refers to q
(F,[0,0])
((1,2),p), and q2 refers to q

(T,(1,2))
((1,2),p) . For completeness, we

note that the construction of the pMC includes also the parameter q
(F,[0,0])
((4,10),p′′);

however, given that the probability of the transitions of probabilistic edge p′′ do
not depend on the value of x, the parameter q

(F,[0,0])
((4,10),p′′) has no role in the expres-

sions on the transitions from (F, [0, 0]) to (✗, (4, 10)) and (S, [0, 0]) in the pMC.
Given that the role of the pMC DA is to represent faithfully the behaviour of

the 1c-cdPTA A, we henceforth consider instantiations that satisfy the follow-
ing constraints, which reflect closely the constraints imposed on the time-elapse
valuation mapping for region-based controllers. An instantiation u ∈ InstDA

is time-elapse preserving if, for each region (l, B) ∈ Regs and region succes-
sor action (B̃, p) ∈ RegA(l, B), (1) q

(l,B)

(B̃,p)
∈ B̃, and (2) for each l′ ∈ L and
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(B̃′, p′) ∈ RegA(l′, B̃), if tpl(p)[q(l,B)

(B̃,p)
](∅, l′) > 0 then q

(l,B)

(B̃,p)
≤ q

(l′,B̃)

(B̃′,p′)
. We write

UA to denote the set of time-elapse preserving instantiations for DA, and will
henceforth consider the feasibility problem for DA and UA.

Correctness of the Translation. Let F ⊆ L, let RegF =
{(l, B) ∈ Regs | l ∈ F} be the set of states of DA that have their location com-
ponent in F , and let λ ∈ (0, 1]. Our aim is now to show that answers to the
feasibility problem for the pMC DA, set of instantiations UA, target set RegF

and threshold λ, and to the region-based controller reachability problem for A,
F and λ coincide. To do this, by definition of these two problems, we require
that there exists a region-based strategy σ ∈ Σrbc such that Prσ(�TF ) ≥ λ if
and only if there exists a time-elapse preserving instantiation u ∈ UA such that
PrD

A[u](�RegF ) ≥ λ. This can in turn be established by the following result.

Proposition 1. (1) For each region-based strategy σ ∈ Σrbc, there exists a time-
elapse preserving instantiation u ∈ UA such that Prσ(�TF ) = PrD

A[u](�RegF ).
(2) For each time-elapse preserving instantiation u ∈ UA, there exists a region-
based strategy σ ∈ Σrbc such that Prσ(�TF ) = PrD

A[u](�RegF ).

Proof (sketch). The proof of Proposition 1 relies on establishing a correspon-
dence between a region-based controller associated with a region-based strategy
of [[A]] and a time-elapse preserving instantiation of DA. For part (1), given
a region-based strategy σ ∈ Σrbc and an associated region-based controller
(act, val), we define the time-elapse preserving instantiation uact,val ∈ UA as
follows: for each (l, B) ∈ Regs and (B̃, p) ∈ RegA(l, B), let uact,val(p(l,B)

(B̃,p)
) =

act(l, B)(B̃, p) and uact,val(q(l,B)

(B̃,p)
) = val((l, B), B̃, p). Note that uact,val is time-

elapse preserving due to the similarity between the definitions of region-based
controllers and time-elapse preserving instantiations. Similarly, for part (2), given
the time-elapse preserving instantiation u ∈ UA, we define a region-based con-
troller (actu, valu) by letting actu(l, B)(B̃, p) = u(p(l,B)

(B̃,p)
) and valu((l, B), B̃, p) =

u(q(l,B)

(B̃,p)
) for each (l, B) ∈ Regs and (B̃, p) ∈ RegA(l, B), hence obtaining the

region-based strategy σactu,valu ∈ Σrbc. We also note that the fact that u is
time-elapse preserving instantiation guarantees that (actu, valu) satisfies the con-
ditions of the definition of a region-based controller. It remains to justify that
these constructions establish that the reachability probabilities considered in
Proposition 1 are equal.

Let B̃ ∈ IB and (act, val) be a region-based controller. Then the set

Vals(B̃) = {val((l, B), B̃′, p) | (l, B) ∈ Regs, (B̃′, p) ∈ RegA(l, B) s.t. B̃′ = B̃}
of possible time-elapse valuations induced by val and belonging to B̃ is finite.
Recalling that, on traversing a probabilistic edge, the value of clock x is either
reset to 0 or retains its value from before the traversal, we can conclude that the
set of states reached by the region-based strategy σact,val is finite, and that we
only need to consider finite paths ending in states of [[A]] that have valuations
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in
⋃

B∈IB
Vals(B). Now we establish a relationship between the probability of

transitions of the MC induced by a region-based strategy and transitions of the
pMC with the associated time-elapse preserving instantiation.

Lemma 1. (1) Let σ ∈ Σrbc with associated region-based controller (act, val),
let (l, v) ∈ S be such that v ∈ Vals(〈[v]〉), let (ṽ, p) ∈ A(l, v), and let (l′, v′) ∈
S. Then Pσ((l, v), (l, v)(ṽ, p)(l′, v′)) = Δ̂

A
[uact,val]((l, 〈[v]〉), (〈[ṽ]〉, p), (l′, 〈[v′]〉)).

(2) Let u ∈ UA be a time-elapse preserving instantiation, let (l, B), (l′, B′) ∈
Regs, let v ∈ Vals(B), and let (B̃, p) ∈ RegA(l, B). Then Δ̂

A
[u]((l, B), (B̃, p),

(l′, B′)) equals:
{
Pσactu,valu ((l, v), (l, v)(valu((l, B), B̃, p), p)(l′, 0)) if B′ = [0, 0]
Pσactu,valu ((l, v), (l, v)(valu((l, B), B̃, p), p)(l′, valu((l, B), B̃, p))) otherwise.

The proof of Lemma 1 relies on the definitions of uact,val (for part (1)) and of
σactu,valu (for part (2)) given above in this section. Note that we considered
finite paths of at length one and two in the lemma; this is not a restriction,
given that region-based strategies are memoryless. Using parts (1) and (2) of
Lemma 1, and recalling the result of [3] (presented in Sect. 2) that specifies
that probabilistically bisimilar states exhibit the same probabilities of reaching
a certain set of states, we can then show the respective parts of Proposition 1
by showing that the initial states of the MCs under consideration (Cσact,val

and
D[uact,val] for part (1), and Cσactu,valu and D[u] for part (2), respectively) are
related by a TF ∪ RegF -preserving probabilistic bisimulation.

The following corollary is a consequence of Proposition 1 and the definitions
of the region-based controller reachability problem and the feasibility problem,
and the fact that the latter is in ETR [16].

Corollary 1. The region-based controller reachability problem is in ETR.

5 Conclusion

We have presented a method for constructing a finite-state pMC that can be
used for solving reachability problems for 1c-cdPTAs when restricted to region-
based, memoryless strategies. To our knowledge, tool support for our approach is
not available currently: both Prism [18] and Storm [12] do not at present per-
form parametric analysis in the case of comparisons between parameters such as
p1 ≤ p2, which are required to represent time-preserving instantiations. Future
work will consider the extension of the results to the case of finite-memory strate-
gies, using an adaptation of the unfolding approach of [15]. An important ques-
tion to be answered is whether finite-memory strategies suffice to obtain optimal
reachability probabilities for 1c-cdPTAs. Furthermore, recalling that we consid-
ered the problem of determining whether a target set can be reached with prob-
ability at least λ, we would also like to consider related problems asking whether
a target set is reached with probability strictly greater that λ, at most λ, or
strictly less than λ. We note that, for the strictly-less-than-λ case, finite-state
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strategies do not suffice, a fact that can be obtained by adapting an example from
[28] to the 1c-cdPTA context. Finally, while our results show that our reachabil-
ity problems for 1c-cdPTAs with region-based, memoryless strategies are in the
complexity class ETR, the lower bound for our problems is unknown. The ETR
lower bound for (quantitative) reachability problems of pMCs [8,16] relies on a
construction which is not directly applicable in our setting, given that 1c-cdPTAs
can express only dependencies between clock values in successive states.
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Abstract. State estimation is a fundamental method in control the-
ory that has applications in privacy, fault diagnosis, and the verification
of other state inference properties. State estimation methods for timed
automata rely on discretizing time into atomic steps. These discrete time
steps are enumerated in separate states, significantly limiting scalability
for large, realistic systems. In this paper, we propose a more efficient
state estimation method for discrete-timed automata. The key idea of
our approach is to avoid the enumeration of single time steps when pos-
sible. We provide a formal definition of a new state estimator model
and an efficient algorithmic approach to derive it from discrete-timed
automata. We validate our method on 11 realistic case studies and show
a significant decrease in computational costs.

Keywords: State Estimation · Observers · Timed Automata

1 Introduction

With the growing size and complexity of real-time systems (RTS), scalable veri-
fication is becoming essential. Such verification methods often require estimators
[15,27,29]. An estimator is a deterministic representation of a target system that
provides the set of all possibly active states for any given input [25]. Determin-
istic tick automata (τ -DFA) [9] are an expressive class of estimators that can
represent various types of RTS [9,10,12,17]. τ -DFA are standard deterministic
finite automata (DFA) that enumerate discrete time steps with a special tick -
symbol τ . The computation of τ -DFA therefore requires the evaluation of every
single time step of the target RTS. This limits scalability and makes verification
of large real-world systems infeasible in practice.

In this work, we address this lack of scalability with a new state estimation
method. The key idea of our method is to avoid evaluating every single time
step. Instead, we identify and evaluate only significant time steps (thresholds)
that are necessary for the computation of an estimator.

To facilitate this, we make two main contributions. First, we introduce thresh-
old estimators (TE), a new class of estimators that is equally expressive as
τ -DFA but can be computed more efficiently. Second, we provide an algorith-
mic approach to derive TE from discrete-timed automata (TA), a powerful and
extensively studied model for RTS [3,6].
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We evaluate our method on 11 diverse case studies from the domains of net-
work protocols and architectures, automotive systems, and smart home devices.
Our results show a significant reduction of the required computation time and
memory compared to state estimation of TA using τ -DFA [10].

The remainder of this paper is structured as follows. Section 2 reviews related
works. Section 3 provides relevant definitions and notation. Section 4 introduces
our TE model and Sect. 5 provides an efficient method to derive TE from TA.
In Sect. 6, we illustrate how TE can be used directly for verification, using the
verification of current-state opacity as an example. In Sect. 7, we evaluate our
method on 11 realistic case studies, and Sect. 8 concludes this paper.

2 Related Work

State estimation is a fundamental method in control theory. An estimator is
a deterministic representation of a target system that provides the set of all
possibly active states for any given input [25,26]. In the literature, there exist
multiple names for such a construction, like forward state estimator [26], current-
state estimator [21], or observer [16,28,29]. For simplicity, we only use the term
estimator for the remainder of this paper. In the following, we review related
works on estimators for timed automata (TA).

The determinization, and therefore state estimation, of TA in the dense-time
setting is generally not possible [6]. This means that there exist TA without any
equivalent deterministic representation, and even checking if one exists is unde-
cidable [6]. Related works on the dense-time setting therefore mainly identify
decidable subclasses [4,6,7,18]. These methods rely on the enumeration of sin-
gle clock regions. This is equivalent to time step enumeration in a discrete-time
setting, limiting the scalability for large systems.

Besides works concerning the dense-time setting, state estimation has also
received attention in a discrete-time setting. There exist multiple works on
estimator models of maxplus automata, weighted automata, or automata over
monoids [13,14,16,27]. In these automata models, transitions have attached
weights that can be interpreted as time instances that enable the respective
transitions. Such automata classes can therefore be seen as subclasses of TA
in a discrete-time setting. However, as each transition resembles a single time
instance, large automata are required to model realistic systems, heavily limiting
scalability.

Another approach to compute estimators of discrete-time models is to use
tick automata (τ -FA) [9]. Using a time abstraction, equivalent non-deterministic
τ -FA can be derived, which can then be determinized using standard methods
for finite automata [10,19]. The result are deterministic tick automata (τ -DFA)
which are estimators of the target system. However, τ -DFA model time using a
special τ -symbol and therefore have to enumerate each time step individually.
The scalability of this approach is thus also limited for realistic systems with
large time constants. Figure 1 depicts our method in comparison. Our TE model
is equally expressive as τ -DFA but more compact and efficient to compute. In
Sect. 7, we compare both methods to compute estimators of a given TA.
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Fig. 1. Overview of our presented method compared to the approach in [10].

3 Preliminaries

In this section, we provide definitions and notation that we use throughout this
paper. We first provide a formal definition of timed automata (TA) [3] and their
current-state estimates (CSEs) in Sect. 3.1 to formally define our system model.
In a second step, we introduce deterministic tick automata (τ -DFA) [9] and
time abstractions in Sect. 3.2. τ -DFA are finite automata that can be used as
estimators of TA under a time abstraction [10]. We use τ -DFA to illustrate and
motivate key concepts of our new threshold estimator (TE) model in Sect. 4, and
also as a base line in our evaluation in Sect. 7.

For general notation, we denote the empty word by ε, a sequence of two
symbols σ, σ′ by σσ′, and a sequence of k ∈ N symbols σ by σk. For a given
set S, let P(S) be the power set of S and |S| the number of elements in S. An
interval I = [a, b] represents the set {i ∈ N | a ≤ i ≤ b}, and let L(I) := a, and
R(I) := b, for a, b ∈ N with a ≤ b. The set of all such intervals is denoted by I.
Finally, we use the common assumption that

∑n
i=j i = 0 holds if n < j.

3.1 Timed Automata and Current-State Estimates

We consider general TA in a discrete-time setting. We assume without loss of
generality that a given TA only has a single clock, as TA can always be trans-
formed to equivalent TA with a single clock in a discrete-time setting [8].

Definition 1 (Timed Automata). A timed automaton (TA) is a 5-tuple A =
(L,L0, Σ,Σo,Δ), where

– L is a finite set of locations,
– L0 ⊆ L is a finite set of initial locations,
– Σ is a finite alphabet,
– Σo ⊆ Σ is a finite set of observable symbols,
– Δ ⊆ L × Σ × Γ × {�,⊥} × L is a finite set of transitions.

A has a single clock c. The set of all possible guards Γ over c is defined by the
grammar γ := c = k | c ≤ k | c ≥ k | γ1 ∧ γ2 with k ∈ N, γ1, γ2 ∈ Γ. If c satisfies
γ, we write c |= γ. A clock modifier λ ∈ {�,⊥} may reset c. This is formalized
by time modification functions fλ : N → N, with f�(n) = 0 and f⊥(n) = n.
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Fig. 2. The partially observable system model [10].

Note that states and locations are distinguished in TA. A state 〈	, t〉 is a location
	 ∈ L at a specific time t ∈ N. TA model timed behavior. As we use a discrete-
time model, time flow can be modelled by sequences of discrete ticks. For this
purpose, we use τ -steps. Given an alphabet Σ, a timed word w is therefore a
sequence w = τT1σ1τ

T2σ2...τ
Tnσn ∈ (τ∗Σ)∗. We generally assume τ �∈ Σ holds.

We consider TA in a partially observable setting. This means that an observer
of the system can only observe the observable symbols σ ∈ Σo. The inferred
projection function Po : Σ → Σo is defined by Po(σ) = σ if σ ∈ Σo, and
Po(σ) = ε if σ ∈ Σ \ Σo. Po is extended to words with Po : (τ∗Σ)∗ → (τ∗Σo)∗,

Po(τT1σ1τ
T2σ2...τ

Tnσn) = τT1Po(σ1)τT2Po(σ2)...τTnPo(σn).

To model the view of an observer of a system, we use current-state estimates
(CSEs) [29], which we adapt to TA as follows.

Definition 2 (Current-State Estimate). Given a TA A = (L,L0, Σ,Σo,
Δ), a current-state estimate (CSE) e ∈ P(L × N) is a set of states that could
currently be active with

e = {〈	1, t1〉, 〈	2, t2〉, ..., 〈	n, tn〉} ∈ P(L × N).

Let ε-CLO : P(L × N) → P(L × N) be the standard ε-closure [19] with

ε-CLO(e) = e ∪ ε-CLO({〈	′, fλ(t)〉 | 〈	, t〉 ∈ e ∧ (	, σ, γ, λ, 	′) ∈ Δ ∧
Po(σ) = ε ∧ t |= γ}),

and for k ∈ N, let e ⊕ k := {〈	, t + k〉 | 〈	, t〉 ∈ e} be the the modified addition
for CSEs and natural numbers.

Intuitively, a CSE can be seen as an estimate from an outside observer that
tracks currently active states. Consider Fig. 2. We assume that an observer has
only access to the observable symbols σ ∈ Σo. The original behavior of a TA
is therefore projected by Po . This makes TA generally non-deterministic from
the view of an observer. A CSE can therefore contain multiple states. ε-CLO is
the standard ε-closure, adapted to CSEs [19] and provides all states that could
be reached by unobservable transitions. ε-CLO is therefore an essential tool for
state estimation.
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Example 1. An example TA AE = (L,L0, Σ,Σo,Δ) is depicted in Fig. 3a with
Σ = {o, u} and Σo = {o}, and the locations L = {	1, 	2, 	3}. 	1 is the only initial
location with L0 = {	1}. Each transition (	, σ, γ, λ, 	′) ∈ Δ is depicted by an arc
with label σ, γ, λ. A CSE of AE could be {〈	2, 4〉, 〈	3, 4〉}. This would mean that
either 〈	2, 4〉 or 〈	3, 4〉 is currently active.

For a given TA A = (L,L0, Σ,Σo,Δ), let δA : P(L×N)×(Σo ∪{τ}) → P(L×N)
be the inferred observable transition function from Δ with

δA(e, τ) = ε-CLO(e ⊕ 1),
δA(e, σ) = ε-CLO({〈	′, fλ(t)〉 | 〈	, t〉 ∈ e ∧ (	, σ, γ, λ, 	′) ∈ Δ ∧ t |= γ}).

δA is extended recursively with δA : P(L × N) × (Σo ∪ {τ})∗ → P(L × N) and
δA(e, ua) =

⋃
e′∈δA(e,u) δA(e′, a), for u ∈ (Σo ∪ {τ}), a ∈ (Σo ∪ {τ})∗, and e ∈

P(L × N). δA therefore characterizes every reachable CSE of A.

3.2 Time Abstractions and Tick Automata

TA in a discrete-time setting can be transformed to τ -DFA [9]. τ -DFA are stan-
dard FA that use the τ -symbol to model the passing of one time unit. The key
to this transformation is the use of a time abstraction α. TA generally have an
infinite state space, as each location can be active for any clock valuation. The
infinite number of possible clock values then leads to an infinite state space. A
time abstraction can overcome this problem by grouping clock values in finitely
many equivalence classes [9,10]. The key idea is that all clock values of the
same equivalence class lead to equivalent behavior in the TA. The finite set of
equivalence classes can then be seen as the state space for a τ -DFA. In [9], the
region abstraction αR [3] is used to transform TA to equivalent τ -DFA. In [10], a
local time abstraction αL is introduced that can be used for a similar but more
efficient transformation. We adapt both notions to our model as follows.

Definition 3 (Time Abstraction). Given a TA A = (L,L0, Σ,Σo,Δ), the
region abstraction αR : N → N and the local time abstraction αL : L × N → N

are defined as follows

αR(v) =

{
MA + 1, if v > MA,

v, otherwise,
αL(	, v) =

{
M �

A + 1, if v > M �
A,

v, otherwise.

such that MA is the largest constant in any guard in A, and M �
A is the largest

local constant of 	 in A. For detail on how to compute M �
A, we refer to [10]. We

extend both αR and αL to CSEs with

αR : P(L × N) → P(L × N), αL : P(L × N) → P(L × N),
αR(e) = {〈	, αR(t)〉 | 〈	, t〉 ∈ e}, αL(e) = {〈	, αL(	, t)〉 | 〈	, t〉 ∈ e}.

Intuitively, a time abstraction α reduces the infinite set P(L × N) of possible
CSEs to a finite set E = {α(e) | e ∈ P(L × N)}. We can use this finite set E as
the state set of a τ -DFA as follows.
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Definition 4 (Deterministic Tick Automata). Given a TA A = (L,L0,
Σ,Σo,Δ) and a time abstraction α, a deterministic tick automaton (τ -DFA) is
a 4-tuple A = (E, e0, Σo ∪ {τ}, δA), where

– E = {α(e) | e ∈ P(L × N)} ⊂ P(L × N) is a finite set of states,
– e0 = {〈	0, 0〉 | 	0 ∈ L0} is the unique initial state,
– δA : E × (Σo ∪ {τ}) → E is a transition function, with

δA(e, τ) = α(e ⊕ 1),
δA(e, σ) = α({〈	′, fλ(t)〉 | 〈	, t〉 ∈ e ∧ (	, σ, γ, λ, 	′) ∈ Δ ∧ t |= γ}),

and extended to timed words with δA : E × (Σo ∪ {τ})∗ → E, and δA(e, ua) =⋃
e′∈δA(e,u) δA(e′, a), for u ∈ (Σo ∪ {τ}), a ∈ (Σo ∪ {τ})∗, and e ∈ P(L × N).

Intuitively, τ -DFA model the behavior of a TA A under a time abstraction α.
τ -DFA use CSEs as a state set E. To model the time flow, each CSE e ∈ E has
a τ -transition to its successor CSE α(e⊕1). A transition e

σ−→e′ exists if the CSE
e would lead to e′ for all enabled σ-transitions in e. The behavior of A and a
derived τ -DFA are therefore equivalent.

To compute τ -DFA, TA are first transformed to equivalent τ -FA [10]. The
resulting τ -FA are not necessarily deterministic. Using standard determinization
methods for FA [19], we can then compute equivalent τ -DFA. We depict this
method in Fig. 1. For details on how to compute a τ -DFA, we refer to [10].

Example 2. Consider our example TA AE (Fig. 3a). An equivalent τ -DFA AE is
depicted in Fig. 3b. αR is used to compute the state space. AE enumerates all
distinguishable clock valuations under the time abstraction αR. Intuitively, each
clock value c ≥ 5 cannot be distinguished from c = 5. It is therefore sufficient
to only consider clock values c ≤ 5. Each state in AE that can be reached by a
word w is an accurate CSE of AE .

3.3 Current-State Opacity

One application of a state estimation procedure is to verify privacy properties
of a given system [28]. Current-state opacity (CSO) is a privacy property that
can be directly verified using estimators [10]. In the CSO setting, the set of
possible system states is divided in secret and non-secret states. An intruder has
full knowledge of the systems structure and all observable events. CSO holds if
an intruder cannot deduce that a secret state is currently active. We adapt the
notion of CSO to our setting as follows.

Definition 5 (Current-State Opacity). Given a TA A = (L,L0, Σ,Σo,Δ),
and a set of secret locations LS ⊆ L, current-state opacity (CSO) holds in A if
δA({〈	0, 0〉 | 	0 ∈ L0}, w) \ (LS × N) �= ∅ holds for any word w ∈ (τ∗Σo)∗.
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Fig. 3. Running example with equivalent estimators assuming u is not observable.

Intuitively, Definition 5 states that every reachable CSE in A contains at least
one non-secret state. Or in other words, for every word w that leads to a secret
state, there also exists a word w′ that leads to a non-secret state and cannot be
distinguished from w. We provide an example for the application of our method
to verify CSO of TA in Sect. 6.

4 Threshold Estimation

In this section, we introduce our threshold estimator (TE), a new estimator
model for timed automata (TA). The key idea for the TE model is to avoid the
evaluation of every single time instance. Instead, we identify and evaluate only
significant time instances (thresholds) that are necessary for the computation
of an estimator. We thereby aim to reduce the computational costs for TE and
enable efficient verification of TA as we discuss later in Sect. 6.

In the following, we first introduce our time flow estimation as a base for the
TE model in Sect. 4.1. We then provide a formal definition for our TE model in
Sect. 4.2 and prove that it can be derived from any TA.

4.1 Estimating Time Flows

One key problem of state estimation in a timed system is to estimate its time
flow. This means to determine the future of a given state with regards to time
flow. However, this is not trivial, as a state in a TA can have multiple possible
future states via unobservable transitions. The usual way to resolve unobservable
transitions in untimed systems is to merge states using the standard ε-closure
[19]. A similar approach can be used in a timed setting. However, the ε-closure
would then be required at every time step.
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Example 3. Consider the TA AE (Fig. 3a) and the CSE {〈	2, 2〉}. To compute
the future of {〈	2, 2〉}, we can iteratively advance the CSE by 1 and get the
infinite sequence {〈	2, 2〉} τ−→{〈	2, 3〉} τ−→ . . .. However, note that in {〈	2, 4〉}, the
unobservable transition to 	3 is enabled. 〈	3, 4〉 could therefore also be active from
the point of view of an observer. This means 〈	2, 3〉 has multiple possible future
states. In order to accurately compute the future of a CSE e, we therefore have
to apply ε-CLO at every step and get ε-CLO(e) τ−→ε-CLO(ε-CLO(e) ⊕ 1) τ−→ . . ..
For {〈	2, 2〉}, we thereby get {〈	2, 2〉} τ−→{〈	2, 3〉} τ−→{〈	2, 4〉, 〈	3, 4〉} τ−→ . . .. Notice
that ε-CLO only has an impact for {〈	2, 4〉}. At any other point, the successor
of a CSE e, is just e ⊕ 1 in this example.

The key idea of our estimation approach for a CSE e is to determine the
next threshold s ∈ N

+, at which new states can be reached, by unobservable-
transitions. All smaller time steps s′ < s do not have to be evaluated and char-
acterize the inferred CSEs with e⊕s′. By using a time abstraction, we only need
to consider a finite number of thresholds s. We formalize this idea as follows.

Definition 6 (Timed ε-Closure). Given a TA A = (L,L0, Σ,Σo,Δ) and a
time abstraction α, let τ -ε-CLO : P(L × N) → (P(L × N) × N)+ be a function
with τ -ε-CLO(e) = [(e1, s1), . . . , (en, sn)], where e1 := e and for all i ∈ [1, n−1],
let ei+1 = α(ε-CLO(ei ⊕ si)) where si ∈ N

+ is the smallest value such that

α(ε-CLO(ei ⊕ si)) �= α(ε-CLO(ei ⊕ (si − 1))). (1)

Further, sn ∈ N is the smallest possible value such that there exist j ∈ [1, n] and
k ∈ N with k < sj such that α(en ⊕ sn) = α(ej ⊕ k ) .

Intuitively, τ -ε-CLO(e) represents the estimated time flow of a CSE e. si is
the threshold that needs to be evaluated for the current ei for 1 ≤ i < n. For
all smaller time steps s < si, the CSEs can be inferred by ei ⊕ s. This is a
significant advantage over the computation of τ -DFA, where every state must
be evaluated. By the use of a time abstraction α, we guarantee that we always
find a previously visited CSE at some point, as α limits all possible CSEs to a
finite set (see Definition 3). Since each si is the smallest value in a finite time
space, we guarantee its existence and unicity. To compute each si, it is sufficient
to check Inequality 1 only for time instances that enable unobservable transitions
that lead to new states. Note that in the worst case, we still get si = 1 for all
i ∈ [1, n], meaning we have to evaluate every single time instance like in τ -DFA.
The worst case complexity is therefore the same. Having defined τ -ε-CLO, we
have the following result.

Lemma 1. Given a TA A = (L,L0, Σ,Σo,Δ), a time abstraction α, and a
CSE e ∈ P(L × N), with τ -ε-CLO(e) = [(e1, s1), (e2, s2), . . . , (en, sn)], for any
z ∈ N, let j := maxj∈[1,n]

∑j−1
i=1 si ≤ z. Then, α(δA(e, τz)) = α(ej ⊕ s) with

s = z − ∑j−1
i=1 si holds.

Proof. Let e ∈ P(L × N) and let τ -ε-CLO(e) = [(e1, s1), (e2, s2), . . . , (en, sn)].
(A): By Def. 6, for j < n, we have α(δA(e, τ ẑ)) = α(ej+1) with ẑ =

∑j
i=1 si.
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(B): Assume for z ∈ N there exists j ∈ [1, n] with α(δA(e, τz)) = α(ej ⊕ s) and
s = z−∑j−1

i=1 si. This implies that for all k ∈ [0, sj −1] we have α(δA(e, τz+k)) =
α(ej ⊕ s + k) by Def. 6.
Note that due to (A), Lemma 1 holds for each z ∈ Z := {∑j

i=1 si | j ∈ [1, n−1]}.
Such z satisfy (B), meaning that also for all z′ ∈ ([0,

∑n−1
i=1 si] \ Z). Lemma 1

holds. Finally, we have ž =
∑n

i=1 si ∧ α(δA(e, τ ž)) = α(en ⊕ sn) and (B), and
therefore, Lemma 1 holds for all z′′ > ž.

Intuitively, Lemma 1 states that τ -ε-CLO(e) can be used to infer any future CSE
of a given CSE e under a time abstraction α.

Example 4. Consider the TA AE (Fig. 3a) under the region abstraction αR.
Using τ -ε-CLO, we can accurately estimate the time flow of any CSE. Consider
τ -ε-CLO({〈	1, 0〉}) = [({〈	1, 0〉}, s1 := 6)], and τ -ε-CLO({〈	2, 2〉}) = [({〈	2, 2〉},
s′
1 := 2), ({〈	2, 4〉, 〈	3, 4〉}, s′

2 := 2)]. Note that for 〈	1, 0〉, there exist no unob-
servable transitions that can lead to future states. We therefore only have a
single element in τ -ε-CLO({〈	1, 0〉}). Moreover, αR({〈	1, k〉}) = {〈	1, 5〉} for all
k ≥ 6 holds. The first step at which a previously visited state is encountered is
therefore s1 = 6. As discussed in Example 3, 〈	2, 4〉 enables the unobservable
transition to 	3. In τ -ε-CLO({〈	2, 2〉}), we therefore have two elements. Start-
ing in {〈	2, 2〉}, we encounter {〈	2, 4〉, 〈	3, 4〉} after s′

1 = 2 steps. We also have
αR({〈	2, k〉, 〈	3, k〉}) = {〈	2, 5〉, 〈	3, 5〉} for all k ≥ 6. So from {〈	2, 4〉, 〈	3, 4〉}, we
encounter a previously visited state after s′

2 = 2 steps. Consider the τ -DFA AE of
AE (Fig. 3a), depicted in Fig. 3b. AE contains the states {〈	1, 0〉} and {〈	2, 2〉}.
Each future CSE can be reached via τ -transitions. All such future states can
also be inferred by our more compact representation of τ -ε-CLO.

4.2 Threshold Estimators

Definition 7 (Threshold Estimator). Given a TA A = (L,L0, Σ,Σo,Δ), a
threshold estimator (TE) is a 6-tuple E = (K,κ0, ξ, Σo, δτ ,ΔE ), where

– K ⊆ P(L × N) is a finite set of locations,
– ξ : K × N → P(L × N) is the estimation function,
– κ0 = {〈	0, 0〉 | 	0 ∈ L0} is the initial location,
– δτ : K × N → K × N is the delay transition function,
– ΔE ⊆ K × σ × I × {�,⊥} × N × K is the finite set of interval transitions.

Intuitively, each location κ ∈ K in E models a CSE in A. Let τ -ε-CLO(κ) =
[(e1, s1), (e2, s2), . . . , (en, sn)] and let ηκ =

∑n
i=1 si. Using τ -ε-CLO(κ) we char-

acterize the estimated time flow in κ until ηκ as follows. We define ξ(〈κ, t〉) :=
α(ej ⊕ s), with the largest possible j ∈ [1, n], such that

∑j−1
i=0 si ≤ t < ηκ, and

s := t − ∑j−1
i=0 si. Intuitively, ξ provides the future CSEs of κ at any point in

time. So for a state 〈κ, t〉 ∈ K × N in E , where κ is a CSE in A, ξ(〈κ, t〉) is the
CSE in A, reached from κ after t time steps.
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Further, let δτ (κ, ηκ) := 〈κ′, t′〉 and for all other t ∈ N with t �= ηκ, let
δτ (κ, t) = 〈κ, t〉. Intuitively, ηκ limits the time that can be spent in κ and with
δτ (κ, ηκ) we define the time flow for the next step to a new state 〈κ′, t′〉.

We assume that for any κ ∈ K,σ ∈ Σ, and t ∈ N, there exists exactly one
(κ, σ, I, λ, z, κ′) ∈ ΔE such that t ∈ I and R(I) < ηκ always holds. This ensures
that E is deterministic. The initial state of E is 〈κ0, 0〉 and the behavior of E is
defined by δE : K × N × (Σo ∪ {τ}) → K × N as follows.

δE (〈κ, t〉, τ) = δτ (〈κ, t + 1〉),
δE (〈κ, t〉, σ) = 〈κ′, fλ(t, z)〉 such that ∃!(κ, σ, I, λ, z, κ′) ∈ ΔE ∧ t ∈ I,

where fλ(t, z) := z if λ = �, and fλ(t, z) := z + t − L(I) if λ = ⊥.
We extend δE to words with δE : K × N × (Σo ∪ {τ})∗ → K × N and

δE (s, ua) =
⋃

s′∈δE (s,u) δE (s′, a), for u ∈ (Σo ∪ {τ}), a ∈ (Σo ∪ {τ})∗, and
s ∈ K × N.

Example 5. Consider the TA AE (Fig. 3a). A TE EE of AE is depicted in Fig. 3c.
EE is computed using Algorithm 1, which we present later in Sect. 5. We depict
each delay transition for δτ (κ, ηκ) = 〈κ′, t〉 by an arc from κ to κ′, labeled
τ : ηκ → t. Furthermore, we depict each transition (κ, σ, I, λ, t, κ′) ∈ ΔE by an
arc from κ to κ′, labeled σ : I

λ−→t. Notice that κ1 and κ2 share the future CSE
{〈	2, 4〉, 〈	3, 4〉}. We therefore have a delay transition from κ2 to κ1. Note that
EE represents the same deterministic behavior as the τ -DFA AE (Fig. 3b) in a
more compact way.

Intuitively, TE are slightly modified TA with a single clock that can be set to
specific values. Moreover, TE have a maximal delay ηκ for each location κ to
explicitly model time flow δτ (〈κ, τ〉) leading to different locations, like τ -DFA.
Having defined TE, we have the following result.

Theorem 1. Given a TA A = (L,L0, Σ,Σo,Δ) and a time abstraction α, there
always exists a TE E = (K,κ0, ξ, Σo, δτ ,ΔE ), such that for any w ∈ (τ∗Σo)∗

the following holds

α(δA({〈l0, 0〉 | l0 ∈ L0}, w)) = ξ(δE (〈κ0, 0〉, w)).

Proof. Let e ∈ P(L × N), and let τ -ε-CLO(e) = [(e1, s1), (e2, s2), . . . , (en, sn)].
By Lemma 1, for any T ∈ N, there exists a largest j ∈ [1, n], with α(δA(e, τT )) =
α(ej ⊕ s) with s := T − ∑j−1

i=1 si and
∑j−1

i=1 si ≤ T . Let κ := e and assume T ≥
ηκ. By Definition 7, we have δE (κ, ηκ) = 〈κ1, t1〉 with ξ(〈κ, ηκ〉) = ξ(〈κ1, t1〉).
Now, let T 1 := T − ηκ. If T 1 ≥ ηκ1 , we again have δE (κ1, ηκ1) = 〈κ2, t2〉 with
ξ(〈κ1, ηκ1〉) = ξ(〈κ2, t2〉). We repeat this process until we reach 〈κm, tm〉 with
Tm < ηκm for some m ∈ N. Then by Definition 7, we have ξ(〈κm, Tm〉) =
δE (〈κ, 0〉, τT ) = α(ej ⊕ s) = α(δA(e, τT )). Now, let ê ∈ P(L × N), and let
κ̂ ∈ K, t̂ < ηκ̂, with ξ(〈κ̂, t̂〉) = e. For any t̃ ∈ [t̂, ηκ̂], we add a transition

(κ̂, σ, [t̃, t̃],�, 0, κ̂′), (2)
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such that κ̂′ := {〈	′, fλ(t)〉 | 〈	, t〉 ∈ ê∧(	, σ, γ, λ, 	′)∧t+t̃ |= γ}. We therefore have
δE (〈κ, 0〉, τT σ) = α(δA(e, τT σ)). Generally, for w ∈ (τ∗Σo)∗, we therefore have
α(δA({〈l0, 0〉 | l0 ∈ L0}, w)) = ξ(δE (〈κ0, 0〉, w)).

With Theorem 1, we have proven that for any TA, there also exists a TE that
provides an accurate CSE at any point in time. The construction we have used for
the observable transitions is equivalent to the transitions in τ -DFA. Intuitively,
we therefore also can derive an equivalent τ -DFA from any TE. With Theorem
1, this implies that TE and τ -DFA are equally expressive, since TA and τ -DFA
are also equally expressive [10].

The construction in the above proof is simple and intuitive but inefficient.
In the next section we show how to construct more compact TE more efficiently
with significantly fewer transitions.

5 Efficient Threshold Estimator Synthesis

In this section, we present our method to efficiently derive threshold estimators
(TE) from timed automata (TA). In principle, we could use the method in the
proof of Theorem 1 to derive equivalent TE from TA. However, such TE would
have transitions for every single time instance, leading to large models like τ -
DFA. We can compute significantly more compact TE by grouping multiple time
instances into single transitions with longer intervals.

Example 6. Consider 	2 in AE (Fig. 3a). 	2 has a transition for o to 	1 that resets
the clock c. Assume we have κ := {〈	2, 2〉}. Using the method in the proof of
Theorem 1, we would get the transitions

(κ, o, [0, 0],�, 0, {〈	1, 0〉}) and (κ, o, [1, 1],�, 0, {〈	1, 0〉}).

Both transitions together are equivalent to the single transition

(κ, o, [0, 1],�, 0, {〈	1, 0〉}).

Intuitively, as both transitions have the same target state, it would be sufficient
to only evaluate a single time instance (0 or 1). We can thereby reduce the
computational costs of computing such transitions in a TE.

In the following, we first identify cases where we can merge multiple time
instances in a single transition in Sect. 5.1. Second, we utilize these results in
Algorithm 1 to efficiently derive more compact TE from TA in Sect. 5.2.

5.1 Grouping Transitions

We now identify cases in which we can merge transitions in the construction of
TE and reduce computational costs. Let A = (L,L0, Σ,Σo,Δ) be a TA and let
e ∈ P(L×N) be a CSE in A. Recall that we can estimate the time flow of e by a
location κ := e, as explained in Sect. 4.2. We illustrate this idea in Fig. 4. With
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Fig. 4. Partitioning of observable behavior for κ in the interval κI = [0, ηκ − 1].

τ -ε-CLO(e) = [(e1, s1), . . . , (en, sn)], depicted in the middle row, we can derive
the inferred states using ξ, depicted in the lower row. At ηκ =

∑n
i=1 si we reach

a previously visited CSE eR ∈ P(L ×N). By Definition 6, eR must always exist.
We therefore only need to consider the interval κI := [0, ηκ − 1] to compute the
observable transitions in κ. Let fΔ : P(L × N) × Σo → P(Δ) be a function to
compute the set of all enabled observable transitions in e with

fΔ(e, σ) = {(	, σ, γ, λ, 	′) ∈ Δ | 〈	, t〉 ∈ e ∧ t |= γ}.

We now partition κI such that we get sub intervals in which at any point in
time, the set of enabled observable transitions remains the same. The purpose
is to identify time spans in which we can group transitions to intervals. Fix
σ ∈ Σo and let Q = {q1, q2, . . . , qm} be a set of threshold values such that
q1 := L(κI) = 0 and for all qj with j > 1 we have qj ∈ κI ∧ qj > qj−1, and

fΔ(ξ(〈κ, qj〉), σ) �= fΔ(ξ(〈κ, qj − 1〉), σ). (3)

Q induces a partition PQ of κI with

PQ = {[L (κI) = 0 = q1, q2 − 1] , [q2, q3 − 1] , . . . , [qm, R (κI)]} .

For any q
κI ∈ PQ and any a, b ∈ q

κI we have fΔ(ξ(〈κ, a〉), σ) = fΔ(ξ(〈κ, b〉), σ).
In Fig. 4, PQ is depicted at the top in yellow and can be computed by using

the state information, inferred from ξ. Each threshold q ∈ Q can be computed
iteratively by testing only the border values of the guards of all reachable transi-
tions from κ in Inequality 3. In the worst case, we get ηκ − 1 intervals, resulting
in a worst case complexity of O((ηκ − 1) · |L| · |Δ|) to compute PQ.

Note that for a, b ∈ q
κI generally δA(ξ(〈κ, a〉), σ) �= δA(ξ(〈κ, b〉), σ) can hold.

This makes grouping transitions in q
κI not trivial. We now present special cases

in which we can group transitions to intervals. Consider an interval q
κI ∈ PQ.

Case 1: Assume for all (	, σ, γ, λ, 	′) ∈ fΔ(ξ(〈κ,L(q
κI)〉), σ) we have λ = �. In

this case, we have δA(ξ(〈κ, a〉), σ) = δA(ξ(〈κ, b〉), σ) = {〈	′, 0〉 | (	, σ, γ, λ, 	′ ) ∈
fΔ(ξ(〈κ,L(κ, I)〉), σ)} for any a, b ∈ q

κI. We can therefore represent the transi-
tions of fΔ(ξ(〈κ,L(κ, I)〉), σ) in q

κI by the transition

(κ, σ, q
κI,�, t, κ′), with ξ(〈κ′, t〉) = δA(ξ(〈κ,L(q

κI)〉), σ). (4)
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Case 2: Assume for all (	, σ, γ, λ, 	′) ∈ fΔ(ξ(〈κ,L(κ, I)〉), σ) we have λ = ⊥.
Since the clock is not reset, we can group the transitions if the target states do
not enable unobservable transitions. For this purpose, we partition q

κI again as
follows. Let P q = {L(q

κI) =: pq
1, p

q
2, . . . , p

q
m′} be a set of threshold values such

that for all pq
j , with j > 1, we have pq

j ∈ q
κI ∧ pq

j > pj−1 with

ε-CLO(δA(ξ(〈κ, pq
j〉), σ)) �= ε-CLO(δA(ξ(〈κ, pq

j − 1〉), σ)) ⊕ 1. (5)

P q induces a partition PP q of q
κI with

PP q = {[L(q
κI) = pq

1, p
q
2 − 1], [pq

2, p
q
3 − 1], . . . , [pq

m′ , R(q
κI)]}.

We depict each PP q in Fig. 4 at the very top in purple. Similar to Q, we can com-
pute each threshold p ∈ P q iteratively by considering only the border values of
all reachable transition guards from κ in Inequality 5. The worst case complexity
to compute PP q is O(|qκI| · |L| · |Δ|). For all z ∈ q

κIp ∈ PP q , we have

ε-CLO(δA(ξ(〈κ, z〉), σ)) = ε-CLO(δA(ξ(〈κ,L(q
κIp)〉), σ)) ⊕ (z − L(q

κIp)).

We can therefore represent the transitions of fΔ(e, σ) in q
κIp by the transition

(κ, σ, q
κIp,⊥, t, κ′), with ξ(〈κ′, t〉) = δA(ξ(〈κ,L(q

κIp)〉), σ). (6)

5.2 Deriving Threshold Estimators from Timed Automata

Algorithm 1 combines the techniques described in the previous section in a con-
cise procedure to efficiently derive TE from TA. We first compute the initial
location of κ0 (Line 1). We then initialize the set of newly discovered loca-
tions U and add κ0 (Line 2). For all newly discovered locations κ, we compute
τ -ε-CLO(κ) and ηκ, and set the delay transition δτ (κ, ηκ) := 〈κ′, t′〉 (Line 5). We
then compute the observable transitions (Line 6–18). For this purpose, we first
compute the partition PQ to identify all intervals in κ that enable the same tran-
sitions. Secondly, we compute all observable transitions for each interval in PQ

(Line 8–17). We check if Case 1 or Case 2 from the construction in Sect. 5.1 apply
(Line 9 and 11). If none of the cases apply, we use the construction, described
in the proof of Theorem 1.

Algorithm 1 always terminates, since there exist only finitely many states to
visit under a time abstraction α. The worst case complexity of a single iteration
is O(|Σ| · MA · |L| · |Δ|), since ηκ ≤ MA for any κ ∈ K. In the worst case, we
get |K| = 2|L|·MA . The total worst case complexity of Algorithm 1 is therefore
O(2|L|·MA · |Σ| · MA · |L| · |Δ|).
Example 7. Consider TA AE (Fig. 3a). Figure 3c depicts an equivalent TE EE

that can be computed with Algorithm 1. Note that EE contains transitions
with intervals that span over multiple time instances. Consider the transition
(κ2, o, [0, 1],�, 0, κ0). This transition can be directly computed using the method
described in Case 1. Similarly, the transition (κ0, o, [2, 3],⊥, 0, κ2) can be directly
computed using the method described in Case 2.
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Algorithm 1. Synthesis of Threshold Estimators from Timed Automata.
Input: TA A = (L, L0, Σ, Σo, Δ) and time abstraction α
Output: TE E = (K, κ0, ξ, Σo, δτ , ΔE )

1: compute initial location κ0 ← ε-CLO({〈
, 0〉 | 
 ∈ L0})
2: initialize set U and add κ0

3: while U is not empty do
4: κ ← extract an element from U
5: compute τ -ε-CLO(κ) and ηκ and set δτ (κ, ηκ) := 〈κ′, t′〉
6: for each σ ∈ Σo do
7: PQ ← compute partition from τ -ε-CLO(κ) for σ
8: for each q

κI ∈ PQ do
9: if Case 1 applies for q

κI then
10: compute all (κ, σ, q

κI, �, t, κ′) (as in Eq. 4) and add to ΔE

11: else if Case 2 applies for q
κI then

12: compute all (κ, σ, q
κIp, ⊥, t, κ′) (as in Eq. 6) and add to ΔE

13: else
14: compute all (κ, σ, [z, z], �, 0, κ′) (as in Eq. 2) and add to ΔE

15: end if
16: add all newly discovered κ′ in U
17: end for
18: end for
19: end while

6 Verification of Current-State Opacity

In this section, we discuss how threshold estimators (TE) can be used to verify
timed automata (TA). From a given TE, we could simply construct an equivalent
τ -DFA that enumerates all inferred states of the TE. This would enable all FA-
based verification methods for any TA. However, the scalability of such a method
would again be limited by the complexity of τ -DFA [10]. It would therefore be
more efficient to directly apply verification methods on TE to avoid the state
explosion caused by τ -DFA. In the following we illustrate such direct application
for the verification of current-state opacity (CSO) as an example.

Theorem 2. Given a TA A = (L,L0, Σ,Σo,Δ), let E = (K,κ0, ξ, Σo, δτ ,ΔE )
be a TE, derived from A. Further, let LS ⊆ L be a set of secret locations, let
Q := L × N be the set of all states in A, and let QS := LS × N be the set
of all secret states in A. CSO holds for A if there exists no κ ∈ K, such that
ξ(〈κ, t〉) ∩ (Q \ QS) = ∅ for t ∈ [0, ηκ − 1].

Proof. By Definition 5, A is CSO if δA({〈	0, 0〉 | 	0 ∈ L0}, w) ∩ (Q \ QS) �= ∅
holds for any word w ∈ (τ∗Σo)∗. Notice that for any e ∈ P(L × N) we have
{	 | 〈	, t〉 ∈ e} = {	 | 〈	, t〉 ∈ α(e)} for a time abstraction α. This implies that
we only need to prove α(δA({〈	0, 0〉 | 	0 ∈ L0}, w)) ∩ (Q \ QS) �= ∅. Further, by
Theorem 1, we can equivalently prove ξ(δE (〈κ0, 0〉, w))∩(Q\QS) �= ∅. {〈κ, t〉 | κ ∈
K, t ∈ [0, ηκ − 1]} is the set of all reachable states in E . If there exists no κ ∈ K,
such that ξ(〈κ, t〉) ∩ (Q \ QS) = ∅, then ξ(δE (〈κ0, 0〉, w)) ∩ (Q \ QS) �= ∅ must
hold for any w ∈ (τ∗Σo)∗.
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Intuitively, CSO can be verified by checking whether a TE contains a CSE that
only consists of secret states. This can be done during the construction of TE.
The computation of TE is therefore an efficient method to verify CSO of TA.
Since TE and τ -DFA are equally expressive, any FA-based verification method
can be adapted to TE. Moreover, since TE are more compact, it is likely that
such an adapted verification method is more efficient as in the case of CSO.

Example 8. Consider the example TA AE (Fig. 3a). Assume 	2 is the only secret
location with LS := {	2}. Now consider the TE EE , derived from A (Fig. 3c).
CSO does not hold, since for example κ2 exists with ξ(〈κ2, 0〉) = {〈	2, 2〉} and
{〈	2, 2〉}∩(Q\QS) = ∅. Intuitively, this means that there exists a word w = ττo,
that leads to the CSE {〈	2, 2〉}, which contains only a secret state. This means
that an intruder would now know that the secret location 	2 must be active.
Equivalently, {〈	2, 2〉} is also the active state in the τ -DFA AE (Fig. 3b) after
reading w.

7 Evaluation

In this paper, we present a new method to efficiently compute estimators for
discrete-timed automata (TA). The key motivation is to compute estimators
efficiently that are expressive enough to represent the deterministic behavior
of any TA, like deterministic tick automata (τ -DFA) [9]. For this purpose, we
introduce threshold estimators (TE), a compact estimator model that can be effi-
ciently derived from TA with Algorithm 1. To evaluate our method, we compare
it to the computation of estimators using τ -DFA as proposed in [10]. We have
implemented a software prototype1 that derives TE and τ -DFA from a given
TA. For comparison, we use the size and the computation time of the result-
ing estimators. As input systems, we use 11 diverse case studies, taken from
the literature [1,2,5,10,11,20,22–24]. All tests were performed on an Intel Core
i5-10600K CPU with 48 GB of RAM.

In the following, we first introduce the case studies in Sect. 7.1. Afterwards,
we define the used metrics in our experiments in Sect. 7.2. Finally, we present
the results of our experiments in Sect. 7.3.

7.1 Case Studies

We use 11 diverse case studies from different domains to test the applicability
of our method. The key characteristics of our case studies are summarized in
Table 1, listing the number of locations (|L|), the number of transitions (|Δ|),
the alphabet size (|Σ|), and the largest constant in a guard (M).

AKM, TCP, and SCTP are network protocols. SCTP is a model of a receiver for
the stream control transmission protocol [22]. AKM is a model of an Android Wi-Fi
authentication system [24], and TCP is a model of the connection management
of the transmission control protocol [20].
1 Available at https://gitlab.com/julianklein/threshold-estimation.

https://gitlab.com/julianklein/threshold-estimation
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Table 1. Overview of the case studies.

AKM TCP SCTP PC CAS SCHED OVEN HVAC WSN WSNET MED

|L| 4 11 41 8 8 23 89 11 63 25 8
|Δ| 18 19 155 24 17 28 179 41 185 50 9
|Σ| 12 11 19 16 12 8 9 22 6 9 8
M 2500 240 1000 10 27000 15 5000 2000 300000 30 10

PC, CAS, SCHED, OVEN, and HVAC represent time-sensitive embedded systems.
In particular, PC and CAS come from the automotive domain. PC is a particle
counter, measuring the number of particles in exhaust gases [2] and CAS is a
car alarm system [1]. SCHED represents a schedule of tests for integrated cir-
cuits [5]. OVEN and HVAC are smart home devices. OVEN is a model of an oven
with time-controlled baking program [11]. HVAC models a heating ventilation air
conditioning unit, adapted from [23].

WSN, WSNET, and MED resemble applications of network architectures. WSN is
a model of a single wireless sensor node that collects data at a fixed timed rate
[11]. WSNET models a wireless sensor network that locates an agent in a large
area [10]. MED is a model of a medical cloud service that processes patient data
[10].

7.2 Metrics

In order to assess the efficiency of our presented method, we measure the compu-
tation times and calculate the sizes of the obtained estimators. We average the
computation times over 100 runs to account for runtime variations due to oper-
ating scheduling and hardware effects. For each computation, we set a timeout
of 60 seconds. To assess the memory usage of the estimators, we define a func-
tion size for both τ -DFA and TE. Intuitively, size correlates with the memory,
required to represent an estimator in a real machine. size is defined as follows.
Size of a τ-DFA (Definition 4): Generally, in a CSE e ∈ P(L × N), we store a
location (	 ∈ L) and a time value (t ∈ N) for each 〈	, t〉 ∈ e. We therefore define
size(e) = |e| · 2. Each state e ∈ E in a τ -DFA is a CSE and has therefore a size
of size(e). Each transition e

σ−→ e′ stores two state references (e, e′ ∈ E) and one
symbol (σ ∈ Σ). We therefore have size(δA) = |E| · |Σ| · 3. In total, the size of
a τ -DFA A is given by

size(A) =
∑

e∈E

size(e) + |Σ| + size(δA).

Size of TE (Definition 7): Each location κ ∈ K stores a CSE e and therefore has
a size of size(e). Any ξ(〈κ, t〉) can be directly computed from τ -ε-CLO(κ). We
therefore set size(ξ) :=

∑
κ∈K size(τ -ε-CLO(κ)). For each (si, ei) ∈ τ -ε-CLO(e),

we store a time value (s ∈ N) and a CSE (ei). We thus get size(τ -ε-CLO(e)) =∑
(si,ei)∈τ -ε-CLO(e) size(ei) + 1. For each κ ∈ K, we store one delay transition
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Table 2. Calculated estimator sizes in the experiments.

αL αR

System TE τ -DFA %(TE, τ -DFA) TE τ -DFA %(TE, τ -DFA)

AKM 15249 102283 -85.09% 45249 44087783 -99.9%
TCP 1045 66333 -98.42% 6085 584973 -98.96%
SCTP 164829 1948205 -91.54% 171829 - -
PC 354 2535 -86.04% 354 6835 -94.82%
CAS 171289 9266477 -98.15% - - -

SCHED 572 5183 -88.96% 572 9008 -93.65%
OVEN 2352 215265 -98.91% 2352 4002765 -99.94%
HVAC 64631 24985303 -99.74% 70631 - -
WSN 902112 - - - - -

WSNET 2961 27169 -89.1% 4323 71674 -93.97%
MED 211 1401 -84.94% 211 2861 -92.62%

〈κ, t〉 τ−→〈κ′, t′〉, consisting of two location references (κ, κ′ ∈ K), and two time val-
ues (t, t′ ∈ N). We therefore get size(δτ ) = |K| ·4. Each (κ, σ, [a, b], λ, z, κ′) ∈ ΔE

stores two location references (κ, κ′ ∈ L), one symbol (σ ∈ Σ), three time
values (a, b, z ∈ N), and one time modifier (λ ∈ {�,⊥}), We therefore get
size(ΔE ) = |ΔE | · 7. In total, the size of a TE E is given by

size(E ) =
∑

κ∈K

size(κ) + size(ξ) + |Σ| + size(δτ ) + size(ΔE ).

7.3 Experiments

We now present the results of our experiments. In each experiment, we compute
the TE and τ -DFA from a given TA. Both methods are depicted in Fig. 1. We
compute TE using Algorithm 1. To compute τ -DFA, we first derive an equivalent
τ -FA [10], which we then determinize using the standard subset construction
[19]. Both methods require a time abstraction α. We test both the standard
region abstraction αR [3], and the local time abstraction αL [10], to assess the
impact of the selected time abstraction. The calculated sizes of the estimators
are displayed in Table 2 and the measured computation times are presented in
Table 3. Tables 2 and 3 depict the results for αL (left) and αR (right) for the
derived TE (our new method), τ -DFA (the method in [10]), and the percentage
improvement %(TE, τ -DFA) := 100 · ( TE

τ -DFA − 1).
Considering the estimator sizes in Table 2, we see a significant improvement

in all systems. The computations using αL testify improvements ranging between
−85% and −99%. The improvements are even more significant for αR, ranging
between −90% and −99%. Regarding only the sizes of the τ -DFA, we also see
a significant decrease with αL, compared to αR. Our results thereby match the
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Table 3. Measured computation times in the experiments.

αL αR

System TE τ -DFA %(TE, τ -DFA) TE τ -DFA %(TE, τ -DFA)

AKM 42.57ms 43.83ms -2.86% 18.51 s 32.53 s -43.11%
TCP 16.25ms 16.36ms -0.65% 0.18 s 0.29 s -38.13%
SCTP 0.66 s 1.76 s -62.11% 21.62 s - -
PC 0.22ms 3.27ms -92.99% 0.21ms 3.43ms -93.73%
CAS 4.50 s 6.43 s -29.96% - - -

SCHED 0.34ms 4.29ms -91.98% 0.30ms 4.12ms -92.71%
OVEN 1.77ms 1.51 s -99.88% 1.09ms 11.51 s -99.99%
HVAC 6.25 s 36.92 s -83.06% 16.70 s - -
WSN 11.94 s - - - - -

WSNET 7.81ms 10.57ms -26.08% 13.05ms 28.16ms -53.65%
MED 0.25ms 0.32ms -22.55% 0.85ms 3.68ms -76.81%

results in [10]. Regarding the sizes of the TE with respect to the time abstrac-
tions, the results vary. For PC, SCHED, and OVEN the TE had the same sizes for
αL and αR. For SCTP and HVAC, we see insignificant improvements for αL. For
AKM, TCP, and WSNET, we see significant improvements, when αL is used. For CAS
and WSN, the computation of the TE timed out for αR, indicating a significant
improvement for αL.

Considering the computation times in Table 3, we see a significant improve-
ment for most systems with αL. The computation times of the TE for AKM and
TCP are only slightly reduced by −2.86% and −0.65% respectively. For CAS,
WSNET, and MED, we see reductions between −20% and −30%. All other systems
showed improvements of at least −60%, going up to −99% for OVEN. The com-
putation of the τ -DFA of WSN timed out, meaning it took at least 60 s, while we
were able to compute a TE in less than 12 s. Considering αR, the improvements
of our TE model are even more significant. For the systems that did not time
out, we see improvements ranging between −38% and −99%. When comparing
the impact of the abstractions on the TE computations, we see that αL performs
better for most systems. For PC, SCHED, and OVEN, αL performs slightly worse,
as the size of the TE does not change for both time abstractions (see Table 2),
and the computation of αL is more expensive than the computation of αR [10].

Overall, our results validate that the use of our TE model provides signif-
icant improvements in both size and computation time, regardless of the time
abstraction. Moreover, they show that the use of αL further improves the effi-
ciency of our presented method significantly for most evaluated systems. Using
Algorithm 1 with αL, we were able to compute TE for all 11 systems in less than
one minute. We thereby demonstrate that our TE model provides an efficient
state estimation method for TA in practice.
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8 Conclusion

In this paper, we have addressed the state estimation problem of discrete-timed
automata (TA). We have introduced threshold estimators (TE), a compact esti-
mator model for TA. Moreover, we have provided a method to efficiently derive
TE from TA. We have further also discussed how TE can be used to verify
TA and demonstrated the direct verification of current-state opacity (CSO) of
TA as an example. To evaluate our method we have implemented a software
prototype and compared its performance to the computation of estimators with
deterministic tick automata (τ -DFA) [10]. In our experiments, we have tested
both methods on 11 realistic case studies from multiple domains. Our evalua-
tion shows that our new method significantly reduces the computational costs
to derive estimators from all evaluated systems.

In the future, we plan to adapt verification methods to the TE model to also
verify other state-based opacity notions and state inference properties, that have
been shown to be verifiable using estimators [28,29]. Moreover, we plan to also
explore possibilities to adapt estimator-based opacity enforcement methods to
TE [26].
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Abstract. Class imbalance in deep learning systems can lead to biased
models due to the unbalanced distribution of data classes in the training
dataset. When such biased models are adopted for software defect pre-
diction (SDP), the prediction precision will be significantly affected. To
improve the mechanism of existing related deep learning models for SDP,
we propose a new neural network, called Logic Rules Neural Network
(LRNN), to address the class imbalance problem. LRNN is characterized
by utilizing formal logic rules on the association between code metrics to
improve the efficiency of deep learning. We describe how relevant formal
logic can be identified and selected and how it can be utilized in the learn-
ing process. We evaluate the performance of our approach by conducting
some experiments using the NASA, PROMISE, AEEEM repositories.
The results demonstrate a significant improvement over several existing
algorithms.

Keywords: Formal Logic · Neural Network · Defect Prediction

1 Introduction

In software engineering, predicting software defects (SDP) is fundamentally
important [22]. As software becomes increasingly complex and large-scale, its
quality has emerged as a widespread concern among both industrial and aca-
demic circles. Manual debugging, in terms of time and financial resources, proves
to be prohibitively expensive to achieve reliability and validity of the software
[19]. Therefore, the significance of automated defect mining is underscored.

Most existing deep neural networks for Software Defect Prediction (SDP) are
designed specifically for detecting defects within a single project. In this con-
text, the prediction model is trained using a segment of the project. Instances
within the project can be assigned their class labels. Subsequently, this model
is employed to forecast defects across the entire project. However, addressing
a software project in this manner frequently encounters issues related to class
imbalance [24]. This is easily understandable, as the volume of code without
defects significantly outweighs the volume with defects. We analyzed multiple
code repositories, including NASA [28], PROMISE [2], AEEEM [7], and identi-
fied a consistent issue of class imbalance across them.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Beyond the issue of class imbalance, we observed that an excessive num-
ber of features in the dataset also impacts the accuracy of predictions. Data
preprocessing is very important, especially in high dimensional dataset [28]. The
approach to data processing directly influences the accuracy of predictions. Prin-
cipal Component Analysis (PCA) [31] serves as the primary method for reducing
data dimensionality. However, this approach compromises the interpretability of
the predictive model, as PCA alters the original features.

This paper aims to address the class imbalance issue and non-interpretability
of data dimensionality reduction by integrating formal logic into neural networks.
These logic rules are imparted to the neural network prior to training the machine
learning system with historical data. In this case, the model requires only mini-
mal training and can identify features associated with defective instances.

Motivated by these insights, we propose Logic Rules Neural Network
(LRNN), a Neuro-symbolic AI system for feature selection with logic rule rea-
soning. This framework focuses on identifying a critical few targets to address
class imbalance without sampling. It is a deep neural network classifier with two
special dense layers. Initially, a rule learning model [11] establishes the initial
layer of the LRNN network as a generator of formal logic rules, aimed at discov-
ering data regularities that can be formulated as IF-THEN rules. Subsequently,
Logical Neural Networks (LNN) [26] form the upper layer of the LRNN network,
enabling both neural network-style learning and traditional AI-style reasoning
concurrently. After reasoning with formal logic, code metrics related to defec-
tive samples are selected as attribution of the deep neural network classifier. In
our study, we conducted extensive experiments on the NASA, PROMISE, and
AEEEM datasets, employing various performance metrics to assess the effective-
ness of our innovative model, which is elaborated in Sect. 4. This paper presents
the following contributions:

– Introducing a new neural network model called LRNN, based on formal logic,
this model can be trained effectively using a small amount of historical data
for prediction tasks.

– To preserve information for the limited data instances, LRNN can mitigate
the effects of class imbalance without over-sampling or under-sampling tech-
niques.

– The LRNN model is evaluated through some experiments on multiple
datasets, and it demonstrates interpretability in feature selection.

This article is organized as follows: Sect. 2 provides a concise review of related
techniques in defect prediction. Section 3 delves into the algorithmic details of
our LRNN method. Section 4 discusses the experimental results, and Sect. 5 con-
cludes the paper.

2 Related Work

As neural networks gain popularity, their limitations are becoming increasingly
apparent. The most critical among these issues is the reduced robustness and
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interpretability of deep learning. Hence, the integration of domain knowledge
into neural network modeling has gained widespread attention as a research
challenge [5]. Neuro-symbolic AI [17] serves as a bridge between neural networks
and formal logic rules.

First-order logic, representing the simplest method for knowledge represen-
tation, has been attempted for integration into machine learning. As a result,
Inductive Logic Programming (ILP) [23] was proposed. The ILP [4] approach
is not a black-box model that is difficult to analyze; it can make use of domain
knowledge described in first-order logic. This approach significantly enhances
the interpretability of machine learning models.

Recently, there’s been an increasing fascination with neural networks that
incorporate formal logic rules. Hu et al. [18] developed an iterative distillation
method that infuses the structured information from formal logic into the weights
of neural networks. Li [21] and Qu [25] attempted to integrate formal logic into
various neural networks, including convolutional neural networks, recurrent neu-
ral networks, and deep neural networks, specifically targeting their input and
output layers. IBM Research [9] proposed a neural network with reasoning capa-
bilities, named Logical Neural Networks(LNN). LRNN presented in this paper
is founded on this framework. The LNN converts formal logic rules into con-
straints that limit the activation function of the neural network, thus controlling
the output of the model.

3 The LRNN Approach

Building on existing research into deep learning for defect prediction, we sug-
gest an inferable neural network model informed by software code metrics. The
architecture of the LRNN model is illustrated in Fig. 1. Initially, we partition
the source software project into two segments randomly. One part is fed into
a formal logic rules generator. The code in these software projects is analyzed
and evaluated through code metrics. The “rules” refer to the range of values
for code metrics and their interrelationships. Thus, the input for this module
is the code’s metrics. We consider the formal logic rules generated by the rule
learning module. Subsequently, a separate portion of the code is designated for
the training and testing phases of the neural network.

The Logical Neural Network (LNN) [26] is engineered to integrate neural
network-style learning and classical AI-style reasoning smoothly. This occurs
because LNNs incorporate rules-based parameters to adjust the activation func-
tion’s threshold, thereby directly influencing the neural network’s output. LNN
is used directly as a module in our proposed method to help reason about logical
statements. Before the LNN layer, there is a rule generation layer that applies a
rule learning technique, as detailed in Sect. 3.1. The input to this layer consists
of all code metrics. After the LNN layer, an attribute selection layer follows. This
layer uses the reasoning results from the LNN to filter code metrics related to
defective samples, which serve as input attributes for the neural network classi-
fier. By following this process, the rules are integrated with the neural network.
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Fig. 1. Structure of LRNN Approach

In this context, it’s worth noting that these formal logic rules constitute a
logical proposition regarding the association between code metrics and the target
label (whether it is a defective sample or not). The LNN should infer specific
code metrics based these logical propositions, deemed highly relevant to the
defective sample, for use in predictions. These metrics are used exclusively as
attributes, aiming to enhance the predictive power for defective instances. This
is the attribute selection in the Fig. 1. Because it employs logic-based attribute
selection, this approach is interpretable. Following this, the classifier will employ
these defect-related code metrics as attributes within its binary classification
process.

3.1 Rule Learning

In machine learning, a “rule” is a semantically clear pattern that describes the
distribution of data. These rules are usually formulated as logical statements in
the “IF...THEN...” format [11]. Rule learning entails deriving a set of rules from
the training dataset to distinguish between various examples [33]. Below is an
example of a rule.

⊕ ← f1 ∧ f2 ∧ · · · ∧ fL, (1)

where ← is implication. ⊕ is consequent, representing the result of this rule. The
rule’s body comprises a conjunction of logical literals, denoted as fk, with the
conjunction symbol “∧” representing “and”. Rule learning covers two main areas
of study [12]. Descriptive rule learning aims at identifying regularities within
specific parts of the dataset, while predictive rule learning seeks to generalize
from the dataset for making predictions on new data. This paper concentrates
on descriptive rule learning.
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Fig. 2. Greedy search for predictive rules

Generation of Formal Logic Rules. In descriptive rule discovery, the primary
focus is on discovering regularities that are observable within a given dataset.
The most commonly used algorithm is the Top-Down Hill-Climbing Algorithm
[10]. In Fig. 2, a greedy hill-climbing algorithm is illustrated for discovering a
single predictive rule. Beginning with an empty rule body, it progressively intro-
duces new conditions. When incorporating a condition, the algorithm explores
all potential additions and assesses them using a heuristic quality criterion. This
criterion typically depends on the number of examples that are covered and
uncovered, distinguishing whether they belong to class “c” (positive examples)
or do not belong to class “c” (negative examples). Here, conditions are added in
an iterative manner to the rule until it no longer includes any positive examples.
Eventually, a set of rules in this given dataset is established.

The technique for generating a specific piece of rule is the Ripper algorithm
[3] in this paper. To develop a rule, we utilize a training set comprising both
positive and negative examples. Consistent with class “c” in the greedy hill-
climbing algorithm.

Table 1. Data Format

Metric 1 Metric 2 Metric n Class

Attrib1 Attrib2 Attribn Defective

Attrib1 Attrib2 Attribn Defect-free

Here is a simple example to illustrate how a single rule is generated. The
dataset’s structure, from which the rules were derived, is depicted in Table 1.
Code metrics serve as attributes for the data. Given a sufficient dataset in the
specified format, RIPPER can extract rules as follows:
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– Defective (class1):- Attrib1 = x, Attrib5 = y.
– Defect-free (class2):- Attrib2 = z.
– None (class3):- true.

where if Attrib1 is x,and Attrib5 is y, then this sample belongs to “class1”. If
Attrib2 is z, then this sample belongs to “class2”; “class3” is the default class;
that is, a sample is classified as “class3” if it fails to meet any of the previously
mentioned rules. This process generates a rule for each data point, which is then
added to the rule set.

Foil gain is utilized to quantify the extent of data extraction into rules. The
expression for foil gain is as follows:

FoilGain = n̂+ × (log2
n̂+

n̂+ + n̂−
− log2

n+

n+ + n−
) (2)

where n̂+ n̂− represents the counts of positive and negative examples, respec-
tively, covered by the new rules after incorporating candidate data; n+ n−
denotes the counts of positive and negative examples covered by the original
rules.

Based on greedy hill-climbing and ripper algorithms, for any given dataset,
the number of generated rules is expected to closely approximate the dataset
size. In other words, a rule is likely to be generated for each data. Without
intervention, the method will continue generating rules indefinitely. This kind of
overfitting is unacceptable. To prevent overfitting, adopting rule refinement is
necessary.

Refinement of Formal Logic Rules. Pruning is crucial for mitigating over-
fitting resulting from the use of greedy algorithms. Likelihood Ratio Statistics
(LRS) are employed to evaluate the quality of the generated rules. The formula
for this statistic is presented below:

LRS = 2 × (m̂+log2
( m̂+
m̂++m̂−

)

( m+
m++m−

)
+ m̂−log2

( m̂−
m̂++m̂−

)

( m−
m++m−

)
), (3)

where m+,m− denote the number of positive and negative examples in the train-
ing set, respectively. m̂+,m̂− denote the number of positive and negative exam-
ples in the formal logic rules set, respectively. The LRS quantifies the discrepancy
between the data distribution in the training set and the rules set. A larger LRS
suggests that more rules can be derived from the dataset; conversely, a smaller
LRS indicates a lack of regularity in this dataset. In addition to this, we have
refined the generated rules using Reduced Error Pruning [13]. The number of
generated rules can be regulated using the Likelihood Ratio Statistics (LRS).

In traditional rule learning, the refinement metric mentioned above is con-
sidered hyperparameter, meaning it is manually set. The accuracy of the predic-
tion is directly influenced by the setting of this parameter, which is the primary
limitation of using rule learning for prediction. In our approach, rule learning
functions as a module for generating logical rules, while the neural network is
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responsible for making predictions. This design effectively mitigates the limi-
tations of rule learning and enhances the model’s robustness. In Experiment
section, the rule learning model directly uses the Python version of RuleKit [15].
The RuleKit package is a rule-learning toolkit designed for prediction, classifi-
cation, and survival analysis, developed by Gudy et al. [14].

3.2 Logical Neural Networks

Recently, due to the increasing complexity of deep learning, there has been a
trend towards the development of interpretable models [16]. Although linear
classifiers and decision trees are often viewed as interpretable, employing rules
in first-order logic (FOL) results in a significantly more potent framework. In
the process of learning these rules, neuro-symbolic AI commonly replaces con-
junctions (and operations) and disjunctions (or operations) with differentiable
t-norms and t-conorms, respectively [8]. However, due to these norms lacking
learnable parameters, their behavior remains fixed, which constrains their capac-
ity of accurately modeling the data.

Logical neural networks (LNN) [26] provide operators with parameters,
enabling a more effective learning process from the data. To preserve the precise
semantics of first-order logic (FOL), LNNs implement constraints during the
learning of operators like conjunction. LNN-∧ is expressed as:

max(0,min(1, β − ω1(1 − x) − ω2(1 − y))) (4)

subject to : β − (1 − α)(ω1 + ω2) ≥ α (4a)
β − αω1 ≤ 1 − α (4b)
β − αω2 ≤ 1 − α (4c)

ω1, ω2 ≥ 0

where x, y ∈ [0, 1] are inputs, α ∈ [
1
2 , 1

]
is a hyperparameter and β, ω1, ω2 are

learnable parameters. Note that max(0,min(1, ·)) clamps the output of LNN-∧
between 0 and 1 regardless of β, ω1, ω2, x and y. The constraints are most note-
worthy. While Boolean conjunction only returns 1 or TRUE when both inputs
are 1, LNNs relax this condition by using α as a proxy for 1 (conversely, 1−α as
a proxy for 0). Specifically, Equation (4a) ensures that the output from the
LNN exceeds the value α provided that its input also exceeds α. Similarly,
Eqs. (4b) and (4c) limit the inputs to the LNN to one high and one low. For
instance, Constraint (4b) forces the output of LNN-∧ to be less than 1 − α for
y = 1 and x ≤ 1 − α. This formulation allows for unconstrained learning when
x, y ∈ [1 − α, α]. By adjusting the value of α, users can manipulate the extent of
learning; increasing α expands the area of unrestricted learning, while decreasing
it narrows this region. Figure 3 depicts product t−norm and LNN-∧ (α = 0.7).
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Fig. 3. (left) Product t−norm. (right) LNN-∧ (α = 0.7)

Traditional backpropagation faces difficulties with linear inequality con-
straints, such as Constraint (4a). However, the LNN framework includes spe-
cialized learning algorithms specifically tailored to tackle this challenge. The
details about the framework can be found in the work by Riegel et al. [26].

Table 2. Samples of Formal Logic Rules

Rules for code metrics Content

Rule1 IF LOC COMMENTS = 〈 9.86, inf ) THEN label = {1}
Rule2 IF HALSTEAD ERROR EST = 〈 0.55, inf ) THEN label = {1}
Rule3 IF CYCLOMATIC COMPLEXITY = (-inf, 3.29) THEN label = {0}
Rule4 IF CYCLOMATIC COMPLEXITY = 〈 11.4, 24.2) AND NUM UNIQUE

OPERATORS = 〈 14.57, inf) AND HALSTEAD ERROR EST = 〈0.50,
inf) THEN label = {1}

Rule5 IF CYCLOMATIC COMPLEXITY = (-inf, 8.64) AND NUM UNIQUE
OPERATORS = 〈7.42, 10.0) AND HALSTEAD ERROR EST = (-inf,
0.45) THEN label = {0}

Rule6 IF CYCLOMATIC COMPLEXITY = (12.0, inf) AND NUM UNIQUE
OPERATORS = (19.00, inf) THEN label = {1}

Rule7 IF ESSENTIAL COMPLEXITY = 〈8.50, inf) AND CYCLOMATIC COM-
PLEXITY = 〈32.50, inf) AND LOC TOTAL = 〈 78.60, inf) AND LOC
EXECUTABLE = 〈54.73, 68.50) AND HALSTEAD LENGTH = (-inf,
249.78) AND HALSTEAD ERROR EST = (-inf, 0.50) AND HALSTEAD
EFFORT = (1.22e+05, inf) THEN label = {1}

Rule8 IF ESSENTIAL COMPLEXITY = 〈1.30, inf) AND CYCLOMATIC COM-
PLEXITY = (-inf, 2. 45) AND LOC COMMENTS = 〈4.95, 5.84) AND
LOC EXECUTABLE = (-inf, 9.65) AND HALSTEAD LENGTH = (-inf,
61.08) AND HALSTEAD ERROR EST = (-inf, 0.50) THEN label = {0}

Rule9

3.3 Simple Example

To show how reasoning works, here’s a simple example. This example was gen-
erated using the NASA [28] dataset, and similar examples can be created for
other datasets. Initially, we generated several rules using the rule learning app-
roach, as detailed in Table 2. Within these rules, a label of 1 indicates defective
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software, whereas a label of 0 denotes a non-defective project. Moreover, defec-
tive samples are termed as positive samples. At the same time, LNN model is
employed to construct the predicates required for reasoning. The architecture
of the LNN model is depicted in Fig. 4. There are three types of relationships
for code metrics: Association, Useful Metrics and Positive Metrics. The assump-
tion suggests that useful metrics include both positive and negative types, and
metrics associated with positive types are also likely to be positive. Associa-
tion represents the presence of a connection between two metrics. For instance,
the repeated appearance of a metric combination across various rules suggests a
connection between these metrics. Useful Metrics represents metrics distinctly
linked to labels, including both positive and negative labels. Positive Metrics
denotes the metric directly linked to the positive label, which is the centerpiece
of our analysis. Our goal is to identify all metrics with a significant correlation
to defective samples.

Fig. 4. The Structure of LNN Model

The reasoning process is more clearly depicted in Fig. 5, where “⊕” repre-
sents “or,” and “⊗” represents “and”. Rule 1, Rule 2, and Rule 3 constitute very
simple logical propositions, each characterized by one single antecedent. This
implies that the metric present in the antecedent of these rules must be consid-
ered as Useful Metrics. Since only one “antecedent” follows “IF”, it indicates
that this singular metric will determine the target’s classification as a defective
sample or not. Based on Rule 1 and Rule 2, it can be easily inferred that either
LOC COMMENTS (metric1) or HALSTEAD ERROR EST (metric2) is associ-
ated with the defective sample. Additionally, CYCLOMATIC COMPLEXITY
(metric3) is associated with negative samples. Based on Rules 4 and 5, HAL-
STEAD ERROR EST (metric2), CYCLOMATIC COMPLEXITY (metric3),
and NUM UNIQUE OPERATORS (metric4) appear in multiple rules, suggest-
ing an association relationship among them. We assume that metrics associated
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with positive metrics are highly likely to be positive themselves. In conclusion,
given the association between code metrics and Rule 6, combined with the neg-
ative metric of CYCLOMATIC COMPLEXITY (metric3), it is inferred that
NUM UNIQUE OPERATORS (metric4) possesses a positive metric. Since if
both CYCLOMATIC COMPLEXITY (metric3) and NUM UNIQUE OPERA-
TORS (metric4) are negative metrics, Rule 6 cannot have a label of 1, thus NUM
UNIQUE OPERATORS (metric4) must be a positive metric. In summary, the
reasoning process classifies metrics into three categories: Positive Metrics repre-
sents metrics directly identified as defective samples, Negative Metrics encom-
passes metrics directly identified as non-defective samples, and Useful Metrics
includes other metrics that appear in the rules. Metrics that appear multiple
times across different rules are designated as Association. We consider metrics
associated with positive metrics to be positive as well, thus identifying all posi-
tive metrics within the set.

Subsequently, only these positive metrics are utilized as attributes for pre-
diction in the deep neural network. In this way, the LRNN layer and the neural
network classifier are integrated together. The above is a simple illustration of
the reasoning process using an example; in fact, most of the rules are long and
complex, such as Rule 7 and Rule 8. Therefore, the entire reasoning process
utilizes the Python API for LNN developed by Riegel et al. [26].

Fig. 5. Process of Reasoning

4 Experiments

In this section, we present some experiments to verify the effectiveness of the
LRNN.
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4.1 Datasets

We chose open-source projects in diverse programming languages from the NASA
[28], PROMISE [2], AEEEM [7], widely used for defect prediction research.
Details of the code repositories are in Table 3.

The total dataset is equally and randomly split into two sections (formal logic
rule set and learning set). We use an formal logic set to generate rules, and for
training, validation, and testing the model, a learning set is utilized. Using the
NASA dataset as an example, the ratio of defective to non-defective samples is
illustrated in the Fig. 6. The other two datasets, PROMISE and AEEEM, were
similarly divided to generate formal logic rules specific to each dataset.

The learning set is used to construct predictive models. It is randomly divided
into 70% for the training set and 30% for the testing set. The training set is used
to train the parameters for deep learning, while the test set is used to evaluate
the performance of LRNN and other baseline models. Besides conducting experi-
ments on the test set, we also separately carried out experiments on each project
within the three datasets. For example, using the NASA dataset, we evaluated
these classifiers separately on CM1, JM1, KC1, PC1, and other projects.

Fig. 6. Partitioning of the NASA Dataset

4.2 Baseline Methodology

We applied the prevailing algorithms in software defect prediction (DP) as base-
line methods and benchmarked them against our proposed LRNN model, ensur-
ing identical conditions for both environment and data processing. The following
technologies comprise networks specifically designed to address the SDP task.

Additionally, we explored making predictions through rule learning, whereby
predictions are directly based on formal logic rules. Furthermore, a neural net-
work employing PCA for dimensionality reduction is utilized to compare the
data dimensionality reduction capabilities of the LRNN.

Recently, large language models (LLMs) have demonstrated significant per-
formance improvements in the SDP task [29]. However, to maintain the consis-
tency of the baseline, neural network classifiers were selected for comparison.
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Table 3. Details of Projects in Multiple Datasets

Dataset Project Number of
metrics

Number
of total
instances

Number of
defective
instances

Percentage of
defective
instances

NASA CM1 22 498 49 9.84

JM1 22 10885 8779 80.65

KC1 22 2109 326 15.46

KC2 22 522 105 20.11

KC3 40 458 43 9.39

KC4 40 125 61 48.80

MC1 39 9466 68 0.72

MC2 40 161 52 32.30

MW1 40 403 61 15.14

PC1 40 1107 76 6.87

PC2 40 5589 23 0.41

PC3 40 1563 160 10.24

PC4 40 1458 178 12.21

PC5 39 17186 516 3.00

PROMISE ant-1.7 21 745 166 22.30

ivy-2.0 21 352 40 11.40

camel-1.6 21 965 188 19.50

jedit-4.0 21 306 75 24.50

log4j-1.2 21 109 37 33.90

Lucene-2.4 21 195 91 46.70

poi-2.0 21 314 37 11.80

Synapse-1.1 21 222 60 27.00

velocity-1.6 21 229 78 34.10

Xerces-1.3 21 453 60 15.20

tomcat 21 858 77 8.90

Xalan-2.4 21 723 110 15.20

AEEEM EQ 62 324 129 39.81

JDT 62 997 206 20.66

LC 62 691 64 9.26

ML 62 1862 245 13.16

PDE 62 1497 209 13.96

1. DP-LSTM: A bidirectional long short-term memory network is utilized to
obtain semantic features of the code for defect prediction [6].

2. DP-CNN: The DP-CNN leverages deep learning to generate features effec-
tively [20].
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3. DP-Transformer: The DP-Transformer captures both syntactic and seman-
tic features from programs, utilizing these characteristics to enhance defect
prediction [32].

4. Rule Learning: Predictions on the test set are made directly with the gener-
ated rules [15].

5. PCA-NN: Before the deep neural network training, the principal component
analysis (PCA) algorithm was implemented for feature processing [1].

4.3 Evaluation Metrics

To comprehensively evaluate the effectiveness of the LRNN model, we use well-
established metrics such as Precision (P), Recall (R), Accuracy (A), and F-
measure (F) [27]. Differences between Precision, Recall, and Accuracy are out-
lined in [30]. These metrics are frequently used in defect prediction to assess the
performance of a model.

Table 4. Confusion Matrix

Predicted defective Predicted non-defective

Actual defective TP FN

Actual non-defective FP TN

Prediction performance evaluation often involves examining data presented
in a confusion matrix. This matrix reports the classification outcomes of a pre-
diction model across various defect categories, compared to their actual classi-
fications. Table 4 displays a confusion matrix containing four results for defect
prediction. Here, the confusion matrix categories-true positive (TP), false neg-
ative (FN), false positive (FP), and true negative (TN)-represent the count of
defective instances correctly predicted as defective, defective instances incor-
rectly predicted as non-defective, non-defective instances incorrectly predicted
as defective, and non-defective instances correctly predicted as non-defective,
respectively. With the confusion matrix, the following performance evaluation
measures, commonly used in defect prediction studies, can be defined as shown
in the subsequent formulas:

P =
TP

TP + FP
,R =

TP

TP + FN
,A =

TP + TN

TP + FN + FP + TN
(5)

F -Measure = 2 × P × R

P + R
(6)

It is important to note that metrics Recall (R) and Accuracy (A) are basically
unaffected by class imbalances, suggesting that both metrics perform well as long
as the model is valid. Conversely, metrics Precision (P) and F-measure (F) may
exhibit significantly lower prediction.
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This phenomenon can be attributed to the imbalance in datasets, which often
contain an excessive number of defect-free instances. The deep learning model
learns the characteristics of this kind of data, thereby facilitating the accurate
classification of defect-free instances (negative samples). This leads to signifi-
cantly high true negative (TN) and markedly low false negative (FN). According
to Eq. (5), it can be concluded that the sample imbalance problem biases both
Recall (R) and Accuracy (A) towards higher levels, thereby diminishing their
utility for performance evaluation.

However, in software defect prediction, the primary concern is accurately
identifying whether samples are defective (positive samples). Defect-free samples
are not the focus of our study. Precision (P) measures the correctness of positive
sample predictions. According to Eq. (6), F-measure (F), which is the average
of Precision (P) and Recall (R), is also directly influenced by Precision (P).
Consequently, to a certain extent, F-measure (F) can reflect the correctness of
classifying defective samples as well, a key concern in addressing the issue of
class imbalance.

Therefore, the criterion for determining whether class imbalance has been
resolved involves assessing whether metrics such as Recall (R) and Accuracy
(A) remain high, while Precision (P) and F-measure (F) demonstrate significant
improvement.

4.4 Results

The efficacy of our proposed approach is verified through comparison with exist-
ing leading deep learning algorithms in the field of software defect prediction.
The experiment results are shown in Table 5, and Figs. 7, 8 and 9. We conducted
a comprehensive assessment of three code repositories, along with individual
evaluations for each specific project contained within these repositories.

Table 5 outline the numerical distribution for both the LRNN and baseline
models across the entire three datasets. Each column in the tables represents
a score for one of the performance metrics, with the best scores highlighted in
bold. It is evident that each algorithm achieves high accuracy (A). However, as
discussed in Sect. 4.3, we should focus more on precision (P). A closer examina-
tion of the first column reveals that LRNN scores significantly higher than the
other models while also maintaining acceptable accuracy (A). Among all meth-
ods, LRNN achieves the highest precision (P) and F-measure(F). This indicates
that the LRNN model effectively mitigates the impact of class imbalance. Also,
since the scores are based on the entire dataset, we consider LRNN to have the
ability to generalize.

In Figs. 7, 8 and 9, box plots were used to represent the specific scores of each
project in the code repositories. Simply, it represents the distribution of perfor-
mance metrics for each project. The red horizontal line in the graph represents
the average score of the projects. A higher red line indicates that this model per-
forms well overall on multiple projects. The red dots represent outliers, indicating
that there is a significant discrepancy in the experimental results across different
code projects. More red dots indicate that the model is less robust. In other words,
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the same predictive model exhibits different capabilities for different project data.
Of the four small graphs produced for each dataset, the two on the left represent
metrics highly affected by class imbalance. The two on the right represent metrics
less affected by class imbalance. We therefore focus on the two graphs on the left
to determine if the LRNN scores are significantly higher than those of the other
models. According to the figure, the precision (P) and F-measure (F) metrics of
LRNN are significantly higher than those of the other models, while the accuracy
(A) and Recall (R) metrics are not significantly different. Additionally, the pre-
diction results of the PCA-based dimensionality reduction method show a large
disparity across projects, whereas LRNN does not exhibit this problem. The fig-
ures illustrate that the LRNN model not only demonstrates robustness but also
outperforms other models in terms of performance.

In conclusion, compared to other models, LRNN has achieved excellent scores
across various projects, indicating its potential for broader application. Crucially,
it mitigates the impact of class imbalance, demonstrating both high performance
and robustness in different projects.

Table 5. Results on Multiple Datasets

Dataset Method Precision Recall F measure Accuracy

NASA DP-LSTM 0.5978 0.7813 0.6096 0.7996

DP-CNN 0.5925 0.7788 0.5983 0.7847

DP-Transformer 0.6029 0.8120 0.6123 0.8120

Rule Learning 0.6011 0.7572 0.6210 0.8255

PCA-NN 0.6025 0.7805 0.6195 0.8134

LRNN 0.8039 0.8010 0.8006 0.8010

PROMISE DP-LSTM 0.6609 0.6954 0.6731 0.7775

DP-CNN 0.6414 0.6791 0.6528 0.7575

DP-Transformer 0.6466 0.6884 0.6589 0.7595

Rule Learning 0.6537 0.6693 0.6604 0.7815

PCA-NN 0.6792 0.7066 0.6902 0.7955

LRNN 0.7348 0.7321 0.7313 0.7321

AEEEM DP-LSTM 0.6621 0.7039 0.6764 0.7881

DP-CNN 0.6619 0.7101 0.6772 0.7843

DP-Transformer 0.6742 0.7179 0.6896 0.7973

Rule Learning 0.6751 0.6766 0.6758 0.8122

PCA-NN 0.6907 0.7165 0.7017 0.8159

LRNN 0.7214 0.7209 0.7207 0.7209
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Fig. 7. On the NASA Dataset

Fig. 8. On the PROMISE Dataset

Fig. 9. On the AEEEM Dataset

4.5 Discussion

This paper presents a novel algorithm that establishes a new benchmark in
the NASA, PROMISE, and AEEEM repositories, surpassing other models such
as the rule learning-based method, DP-LSTM, DP-CNN, DP-Transformer, and
DNN with PCA in performance. In contrast to traditional rule learning methods,
LRNN transforms the generated rules into a penalty term for the attributes of
the neural network, rather than making predictions based on the rules directly. It
utilizes the efficient computational power of neural networks, ultimately improv-
ing prediction correctness. Compared to LSTM, CNN, and Transformer-based
architectures, LRNN, based on LNN, is a model that can reason about the rela-
tionships between different features and perform feature selection. It provides a
new method for data dimensionality reduction. In contrast to PCA, LRNN is
a supervised learning method, not unsupervised, and possesses generalizability
and robustness across different datasets.
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There is substantial potential for improving the performance of software
defect prediction models. LRNN requires sampling a subset of the project to
develop formal logic rules, which are then utilized for feature selection to enhance
the prediction accuracy. However, the applicability of this formal logic to other
projects, specifically for cross-project forecasting, remains uncertain. This is
because logic rules are often derived from analyzing data specific to a partic-
ular project. It’s crucial to emphasize the extensive array of GitHub repositories
accessible in the real world, which present considerable opportunities for advanc-
ing deep learning in software defect prediction. Cross-Project defect prediction is
a notable research area, well-suited for integrating logic rules with within-project
forecasting methods to enhance model generalizability. In addition to addressing
software defect prediction as a binary classification method, the approach can
be extended to handle multi-class classification problems in the future.

4.6 Threats to Validity

The following points highlight various potential risks to the validity of our exper-
iments:

– Bias of dataset. A single prediction model may produce varying results
across different code projects, indicating that consistent performance can-
not be guaranteed in diverse project environments. In evaluating the LRNN
model, we have selected multiple projects from three code repositories: NASA,
PROMISE, and AEEEM. Analyses of multiple code projects have led to sim-
ilar conclusions.

– Bias of evaluation measures. The potential bias stems from employing met-
rics like Recall and Accuracy to report on defect prediction performance,
while alternative metrics like F-measure is not considered. Both Precision
and F-measure are comprehensive metrics that could offer a more nuanced
understanding of model performance. In our study, we employ widely used
metrics such as Precision, Recall, Accuracy and F-measure for the empirical
assessment of defect prediction.

– Comparison accuracy. Many authors of the related work being compared do
not make the program codes of their methods available. We have meticulously
implemented these methods based on the detailed descriptions provided in
their respective papers.

5 Conclusion

This paper introduces a new system named Logic Rules Neural Network (LRNN)
for detecting defects in software. It achieves the highest performance across all
major related models on the NASA, PROMISE, AEEEM datasets. The experi-
ment results demonstrate that LRNN can infer code metrics related to defective
samples based on first-order logic rules. The impact of class imbalance is reduced
without sampling. Employing these code metrics as model attributes introduces a
novel method for feature engineering. Like principal components analysis (PCA),
this method makes the data dimension reduction while offering interpretability.
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Abstract. With the growing prevalence of neural networks in computer
systems, addressing their dependability has become a critical verification
problem. In this paper, we focus on quantitative robustness verification,
i.e., whether small changes to the input of a neural network can change its
output. In particular, we perform quantitative symbolic analysis, where
the goal is to identify how many inputs in a given neighborhood are mis-
classified. We target quantized neural networks, where all values in the
neural network are rounded to fixed point values with limited precision.
We employ symbolic execution and model counting to achieve quantita-
tive verification of user-defined robustness properties where the verifier
will report not only whether the robustness properties are satisfied for
the given neural network, but also how many inputs violate them. This
measure enables comparison of non-robust networks by assessing the level
of robustness, which is not possible with existing quantized network ver-
ifiers. We implement and evaluate our approach as a tool called VerQ2.
To the best of our knowledge, VerQ2 is the first quantitative verifier for
quantized neural networks.

Keywords: Formal Verification · Model Counting · Neural Networks

1 Introduction

Neural networks are becoming increasingly common in safety critical domains
like medicine and automotive industry. For safety critical applications, tradi-
tional techniques for evaluating effectiveness of neural networks, such as accuracy
on a previously unseen data set, are not sufficient. It is necessary to evaluate the
dependability of neural networks—for example, checking if (potentially adver-
sarial) small changes to the input can change the output of a network, and,
furthermore determining how many inputs exist within a perturbation region
that can trigger an unexpected output.1
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A full precision neural network uses floating point values, which is compu-
tationally intensive and may not be feasible in cases where storage space or
processing power is limited [5]. Quantized networks address this limitation by
using fixed point numbers. These networks can thus be implemented using less
storage, and can also be computed faster [22]. The most extreme example of this
type of network is a binary neural network, where each value is 1 or 0. Quan-
tized networks are commonly used in mobile, embedded, and IoT devices where
memory and power are limited [22].

In the safety critical healthcare domain, the use of machine learning models
is expanding [28] including systems that are expected to make and execute a
decision without physician involvement, such as a device that is implanted into
a patient’s body. The FDA maintains strict requirements for device approval [1].
Additionally, implanted devices have strict power and size requirements which
make quantized networks a valuable method of storing and executing neural
networks in the medical domain.

Thus, automated verification of quantized neural networks is a critically
important area of research. In this paper, we focus particularly on quantita-
tive verification of quantized networks. Given a correctly classified input and
an allowed perturbation around that input, traditional robustness verification
evaluates whether or not any inputs exist in the region that are classified dif-
ferently (incorrectly). Quantitative robustness verification goes further to count
how many inputs in that region are classified differently. As we mention in our
related work discussion, there are traditional verifiers for floating point networks
and quantized networks, and there are quantitative verifiers for floating point
networks and binary precision networks. However, to the best of our knowledge,
this paper is the first to address quantitative robustness for quantized networks
with greater than binary precision.

In this paper, we present a quantitative verifier for quantized neural networks,
capable of handling different levels of precision. Our major contributions, imple-
mented in our tool VerQ2 (VERifier for Quantitative robustness of Quantized
neural networks), are:

– A quantitative robustness verification approach for quantized neural networks
based on symbolic execution and model counting.

– Improvements to constraint solving during symbolic execution for neural net-
works based on 1) Abstract symbolic execution, and 2) Model generation at
symbolic execution tree nodes.

– Translation rules from fixed point arithmetic computations to integer con-
straints.

– Experimental evaluation of VerQ2 and empirical comparison of model coun-
ters on constraints generated by neural networks.

We test our quantitative robustness verification tool VerQ2 on networks
trained from two medical datasets from the UCI Machine Learning Reposi-
tory [16]. Our experiments show the techniques we present improve the per-
formance of quantitative symbolic execution over our baseline implementation
and perform better than sampling-based approaches including Provero [8].



Quantitative Verification for Quantized Networks 127

Motivating Example. Let us look at two networks, both trained with the Parkin-
son’s dataset [16,27] to detect Parkinson’s disease from voice data. The networks
take in inputs with 22 input features, each one corresponding to a different mea-
surement gathered from the voice of a patient. Network A has one hidden layer
of size 60, and an accuracy of 84.21%. Network B has two hidden layers of size
15, and an accuracy of 89.47%. We evaluate robustness of these two networks
for a robustness region using data generated from a patient who has Parkinson’s
disease, where two of the 22 input features are perturbed and can take on any
possible value within the expected input range.

Within the given perturbation region, both networks classify some inputs
incorrectly. For a traditional verifier, this would be the extent of the robustness
check results. However, with our quantitative verifier VerQ2, we can further show
that out of 1089 possible inputs in the perturbation region (33 allowed values per
perturbed input feature), network A misclassifies only 12, whereas network B
misclassifies 273. We can alternately analyze an average of multiple robustness
regions using the quantitative robustness definition we provide in this paper
(Sect. 2.1). Our quantitative robustness definition provides a robustness value
between 0 and 1 (1 corresponds to 100% robustness—no input in the robustness
region violates the robustness property). When we compare 11 robustness regions
for networks A and B using VerQ2, we find network A has an average robustness
of 0.904, whereas network B has an average robustness of 0.954. Depending
on the importance of an individual input, we may decide either to prioritize
overall higher robustness or higher robustness in a key instance when choosing
which network to use. Finally, we can also compare the least robust input from
a set of inputs—network A has an input with 0.427 robustness whereas for
network B, for the set of inputs we analyzed, the minimum robustness is 0.749.
Quantitative robustness analysis enables us to make these types of comparisons
among networks, which are not possible with traditional robustness analysis.

Related Work. There is a significant amount of prior work on non-
quantitative verification of full precision neural networks [13,14,17,18,26,31]
and there is a limited amount of prior work on quantitative verification of full
precision neural networks [8,12,21,29]. These employ a variety of techniques,
including formal verification, sampling, and abstraction.

One of the techniques used for scalability in symbolic verification of full-
precision networks is the approximation of floating point computations using real
values. However, this approach can lead to incorrect verification results [25]. Our
approach avoids this type of erroneous analysis by avoiding real approximations
of the quantized values and taking into account how the values will behave with
rounding (Sect. 3.2).

For quantitative verification of full precision networks, one approach is to
use statistical sampling methods to obtain a probabilistically sound result for
quantitative robustness [8,12]. We choose one such approach [8] for experimental
comparison as it uses higher precision in published analysis.
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There is also some prior work on verification methods for binarized neural
networks [3,9,24,36]. These have a computationally simpler task compared to
higher precision quantized network verifiers such as ours.

To the best of our knowledge, there is no prior work on quantitative verifi-
cation for quantized networks. In terms of traditional (non-quantitative) verifi-
cation of quantized networks, there are some verifiers that use SMT constraint
solving [20,23]. However, as these are traditional verifiers, the information they
can provide is limited. We discuss this drawback in Sect. 2 and show how our
quantitative verification approach offers more valuable results.

As VerQ2 is the first tool to produce quantitative robustness results for quan-
tized networks, experimental comparison with existing tools is limited. Our app-
roach is faster and can handle larger networks than [21], which computes exact
counts for constraints on floating point networks. For comparison, we implement
an algorithm proposed for quantitative verification of full precision networks [8]
(with modifications for quantized networks), and show that our approach per-
forms better in Sect. 4.

2 Quantitative Robustness Formalization

Fig. 1. A feedforward network with
two input features (x0, x1), two outputs
(y0, y1).

We use F to denote the set of all floating
point numbers, and I to denote the set
of fixed point numbers, with subscripts q
and d indicating the total bit length and
the number of fractional bits, e.g., Iq,d.

Figure 1 shows a small example net-
work where weights are marked along
their respective arrows, biases are marked
above respective neurons. A neural net-
work N takes an input X consisting of
N features, 〈x0, · · · , xN−1〉, has K hidden
layers where each hidden layer k with size
Jk consists of neurons h0,k, · · · , h(Jk−1),k,
and returns values of J output neurons y0, · · · , yJ−1. In a full precision network,
x0, · · · , xN−1 ∈ F, y0, · · · , yJ−1 ∈ F, and all h ∈ F. For computing the values of
the hidden and output neurons, the connections between each neuron in different
layers have weights wi,j,k where the ith neuron in kth layer and jth neuron in
(k + 1)th layer is connected, and each neuron i in layer j has bias value bi,j .
We use the ReLU activation function in our model: ReLU (x) = max(x, 0). For
classification tasks, the output neuron with the highest value determines the
class—if yj has the highest value, the classification is class j.

The equations below describe how the values are computed in a non-
quantized (using floating point numbers, F) neural network:

hj,0 = ReLU (Σn
i=0wi,j,0xi + bj,0) (1)

hj,k = ReLU
(
Σn

i=0wi,j,khi,(k−1) + bj,k
)

(2)
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yj = Σn
i=0wi,j,Khi,K−1 + bj,K (3)

Quantization maps variables of the network (neuron values, weights, bias
values, etc.) to a limited precision. We use Lmin, Lmax ∈ I to denote the limits
of the quantized values (minimum and maximum possible values represented by
the chosen fixed point size): Lmin = −(2q−d−1) and Lmax = 2q−d−1 − 2−d for
quantization Iq,d. When working with quantized networks, the computation of
nodes must not only take into account the ReLU activation functions, but also
the rounding of results to maintain limited precision and avoid overflow. Due to
the higher precision to avoid overflow during the computation, the ReLU piece
of the above Eqs. (1) and (2) is computed as follows:

ReLU(expr) =

⎧
⎪⎨

⎪⎩

0, if expr ≤ 0

Lmax, if expr ≥ Lmax

expr, otherwise
(4)

Additionally, Eq. (3) is replaced with the following for quantized networks:

yj =

⎧
⎪⎨

⎪⎩

Lmin, if Σn
i=0wi,j,Khi,K−1 + bj,K ≤ Lmin

Lmax, if Σn
i=0wi,j,Khi,K−1 + bj,K ≥ Lmax

Σn
i=0wi,j,Khi,K−1 + bj,K , otherwise

(5)

Due to the multiplication of fixed points, results of Σn
i=0wi,j,khi,k−1 + bj,k will

contain double the original fractional bits. The rounding to account for this will
be shown in Sect. 3.2.

2.1 Quantitative Robustness

Fig. 2. Two hypothetical perturbation regions
for the same input for two different networks.
Both networks are robust for region 1 but not
region 2. However, the network on the right is
less robust than the network on the left.

In neural network verification,
local robustness is measured by
checking if any small perturba-
tions made to the input change
the output (classification result).
If there exists such a perturba-
tion that changes the output,
then the network is not robust on
that input. However, this yes/no
answer does not give any infor-
mation about how many of the
perturbations change the out-
put. For example, in Fig. 2, both
examples would be determined not robust for region 2 by a traditional verifier,
whereas a quantitative verifier can distinguish the levels of robustness for these
two networks.

We provide a definition for quantitative robustness which measures the pro-
portion of inputs within a given perturbation region which do not change the
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output. For a given neural network N and a perturbation region containing input
Xc within the region with known correct classification, we define the quantitative
robustness measure R(N , SPerturbRegion) as follows:

R(N , SPerturbRegion) = |SRobustSet |/|SPerturbRegion | where

SRobustSet = {X̃ | argmaxN (X̃) = argmaxN (Xc) ∧ X̃ ∈ SPerturbRegion}

In the definition above, SPerturbRegion denotes the set of all inputs within
the perturbation region, and SRobustSet denotes the subset of those where the
output of N does not change. We call remaining inputs potentially adversarial
inputs, and we define SAdversarialSet as follows: SAdversarialSet = SPerturbRegion \
SRobustSet . This is a general form of robustness definition that can represent
attacks such as one or two-pixel attacks for images, or general L∞ ball constraints
over the input [32,33].

A network with a higher number of misclassified inputs (i.e., larger
|SAdversarialSet |) in a given perturbation region is less robust (and thus more
prone to adversarial attacks) than a network with fewer misclassified inputs in
the same region.

3 Quantitative Symbolic Robustness Verification

In this section, we present our quantitative symbolic verification approach for
quantized neural networks. The two major techniques we use for quantitative
verification of neural networks are symbolic execution and model counting. Sym-
bolic execution is a verification technique in which a program is evaluated by
constructing a tree of all of the possible paths through the program, where each
node in the tree corresponds to a branch condition in the program [6]. A sym-
bolic state and path condition are recorded at each node of the tree; the symbolic
state keeps track of the value of each variable at that point in the program and
the path condition keeps track of all of the constraints necessary to reach that
point in the program. We denote the path condition as a set of constraints Cp,
comprised of clauses c0, · · · , ct−1. At a given branch, ct is the new clause being
introduced. It is possible that at any branch point, one or more of the possible
paths may be infeasible, and if a path is infeasible there is no need to traverse
further down. The feasibility of a path is checked with a constraint solver, which
checks if the path constraints at each node are satisfiable.

The next technique that we use is model counting. A model counting con-
straint solver returns the number of solutions to a satisfiable constraint, or 0
if the constraint is unsatisfiable. Using symbolic execution and model counting
one can determine which execution paths are more likely than others [19].

3.1 Symbolic Analysis for Quantitative Robustness

Our quantitative verifier uses symbolic execution to explore all possible paths
of a neural network and model counting to compute the quantitative robustness
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Algorithm 1. QuantSymRobustness(Cin, Cout, N )
� Symbolic analysis for computing quantitative robustness of a neural network
� Calls QuantSymExec and a model counter (Count)
Input: Cin : set of all user constraints on inputs, derived from SPerturbRegion ; Cout : set of all user
constraints on outputs, representing the robustness constraints from SRobustSet ; N : the neural
network under analysis
Output: Quantitative robustness metric R

1: PerturbRegionSize ← Count(Cin) � Computing |SPerturbRegion |
2: RobustSetSize ← QuantSymExec(N , Cin, Cout) � Computing |SRobustSet |
3: return RobustSetSize/PerturbRegionSize � Computing |SRobustSet |/|SPerturbRegion |

measure. In this paper we focus only on networks with ReLU (Rectified Linear
Unit) activation functions, which is a common activation function [26]. We use
Z3’s linear integer arithmetic SMT solver [15] to evaluate the path conditions
and determine if each branch is feasible. The fixed point values are converted
into integers, and we create SMT formulas that are equivalent to the fixed point
conditions they are describing (Sect. 3.2). We chose this encoding, rather than
bit-vectors [10], to allow for the use of linear integer arithmetic model counters.

We use syntax Cin and Cout to represent constraints on input perturbations
and expected output, respectively. We use a model counting constraint solver
on Cin to get the total number of possible inputs within that region. Then, we
use symbolic execution to capture all possible behaviors of the neural network
N for all inputs that satisfy Cin.

We show the overall quantitative verification approach in Algorithm 1, with
symbolic execution detailed in Algorithm 2.

The symbolic execution process described in Algorithm 2 is as follows:

1. On line 1, a symbolic expression is created for the node value: the result of
multiplying weights and adding the bias, before the ReLU is applied.

2. Lines 3–20 show the branching that occurs for all nodes except the last output
node. There are three possible branches—expr could be ≤ the lower limit Ll

(0 for ReLU activated nodes, Lmin for output nodes), expr could be ≥ the
upper limit Lmax, or expr could be between the two limits. In each case, the
stored expression for the node is updated and a recursive call is made to
continue exploring the tree given that outcome for the value of node.
The if statement in lines 16–19 includes the addition of constraints to the
path constraint which make sure Expr(node) is constrained to the proper
result of rounding expr (Sect. 3.2).

3. Lines 22–35 mimic 3–20 in structure, but the gathered constraint is conjoined
with Cout and a call is made to Count to get a count of how many distinct
input vectors (X̃) satisfy the gathered constraint.

The helper functions employed in Algorithm 2 are as follows: NewSym-
Var() creates a new symbolic variable name unique to the current node of the
tree; Next(node) returns the next node from the network, nodes are ordered
by layer (from beginning to end), and from 0 to j ascending within each layer;
Expr(node) returns the symbolic expression associated with the node, and can
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Algorithm 2. QuantSymExec(N , Cp, Cout, node)
� Quantitative symbolic execution of a neural network
� Called by QuantSymRobustness (Algorithm 1); Calls IsSat (Algo-
rithms 3, 5), CreateExpr (Algorithm 4), and Count; Uses helper functions
NewSymVar, Next, Expr, isOutput, isLast
Input: Cp: Current path constraint on symbolic input values; Cout : Constraint on
output nodes; N : the neural network under analysis; node: current node with indices
j, k
Output: Number of robust inputs within the perturbation region

1: expr ←ConstructExpr(j, k)
2: if ¬isLast(node) then
3: RobSS ← 0
4: Ll ← 0
5: if isOutput(node) then
6: Ll ← Lmin

7: end if
8: if IsSat(Cp, expr < 2dLl + 2d−1) then � exprrounded ≤ Ll

9: Expr(node) ← Ll

10: RobSS ← RobSS + QuantSymExec(N , Cp ∧ expr < 2dLl + 2d−1, Cout,
Next(node))

11: end if
12: if IsSat(Cp, expr ≥ 2dLmax − 2d−1) then � exprrounded ≥ Lmax

13: Expr(node) ← Lmax

14: RobSS ← RobSS + QuantSymExec(N , Cp∧expr ≥ 2dLmax−2d−1, Cout,
Next(node))

15: end if
16: if IsSat(Cp, expr ≥ 2dLl + 2d−1 ∧ expr < 2dLmax − 2d−1) then �

exprrounded > Ll ∧ exprrounded < Lmax

17: Expr(node) ← NewSymVar() � create a new symbolic variable for node
18: RobSS ← RobSS + QuantSymExec(N , Cp ∧expr ≥ 2dLl+2d−1 ∧expr <

2dLmax − 2d−1 ∧ expr < 2dExpr(node) + 2d−1 ∧ expr ≥ 2dExpr(node) − 2d−1,
Cout, Next(node))

19: end if
20: return RobSS
21: else
22: RobSS ← 0
23: if IsSat(Cp, expr < 2dLmin + 2d−1) then � exprrounded ≤ Ll

24: Expr(node) ← Ll

25: RobSS ← RobSS + Count(Cp ∧ expr < 2dLmin + 2d−1 ∧ Cout)
26: end if
27: if IsSat(Cp, expr ≥ 2dLmax − 2d−1) then � exprrounded ≥ Lmax

28: Expr(node) ← Lmax

29: RobSS ← RobSS + Count(Cp ∧ expr ≥ 2dLmax − 2d−1 ∧ Cout)
30: end if
31: if IsSat(Cp, expr ≥ 2dLmin + 2d−1 ∧ expr < 2dLmax − 2d−1) then �

exprrounded > Ll ∧ exprrounded < Lmax

32: Expr(node) ← NewSymVar() � create a new symbolic variable for node
33: RobSS ← RobSS + Count(Cp ∧ expr ≥ 2dLl + 2d−1 ∧ expr < 2dLmax −

2d−1 ∧ expr < 2dExpr(node) + 2d−1 ∧ expr ≥ 2dExpr(node) − 2d−1 ∧ Cout)
34: end if
35: return RobSS
36: end if
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be used to change the symbolic expression (this accesses and modifies the sym-
bolic state); isOutput(node) returns True only if the node is an output node;
isLast(node) returns True only if the node is the last node in the order; Con-
structExpr is used to compute the multiplication of previous layer nodes by
weights and add the bias value, and is shown in Algorithm 4.

We use four different model counting tools to obtain the number of satis-
fying solutions to a constraint. Three of these are model counters: ABC [4],
Barvinok [34], and LattE [7]. The fourth is Z3 [15], which can be used to count
satisfying models by generating a satisfying model, adding the negation of the
model to the constraint, and looping until the constraint is unsatisfiable. We
describe the model counters in more detail in Sect. 3.4.

3.2 Fixed Point Rounding Constraints

As discussed in Sect. 2, after the multiplication of node values by weights, the
result has double the fractional bits, and must be rounded. We translate the
fixed-point inequality expressions (used when deciding how the ReLU impacts
each internal node value) into equivalent integer expressions for symbolic execu-
tion of the network.

The fixed point values themselves are translated to integers—for example,
a concrete fixed point value 0010.1100 (2.75) can be represented as a concrete
integer value 00101100 (44) by eliminating the decimal point. We use this app-
roach in transforming fixed point computations to equivalent integer constraints
during symbolic execution of the network.

For the following formulas, d will represent the number of fractional bits in
the chosen fixed point representation and expr ∈ Iq,2d will represent the value to
be rounded. The rounding rule is as follows, with & representing bitwise AND
operation, and � representing arithmetic right shift:

exprrounded ∈ Iq,d =

{
expr � d, if expr & (2d − 1) < 2d−1

(expr � d) + 1, if expr & (2d − 1) ≥ 2d−1
(6)

The following four equations provide equivalences between the expression we
wish to evaluate, using the rounded result of expr, and the equivalent expression
without using the rounded result.

exprrounded < x ⇔ expr < 2dx − 2d−1

exprrounded ≤ x ⇔ expr < 2dx + 2d−1

exprrounded > x ⇔ expr ≥ 2dx + 2d−1

exprrounded ≥ x ⇔ expr ≥ 2dx − 2d−1

(7)

It is also necessary during the symbolic execution of the network to use
expr rounded as an argument in future layer computations. This is handled by
setting expr rounded equal to a new symbolic variable n, and then using n in any
place expr rounded would appear:

exprrounded = n ⇔ expr < 2dn + 2d−1 ∧ expr ≥ 2dn − 2d−1 (8)
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Algorithm 3. IsSatorig(Cp,ct)
� Path constraint checking (simplest version)
� Calls an SMT solver (SMTSolve)

Input: Cp: prior path constraint; ct: new constraint to be added to the path
constraint
Output: Satisfiability of Cp ∧ ct

1: if SMTSolve(Cp ∧ ct) = SAT ∨ SMTSolve(Cp ∧ ct) = UNKNOWN then
2: return SAT
3: else
4: return UNSAT
5: end if

3.3 Constraint Solving Optimizations

The most time consuming computation during symbolic execution of neural net-
works is in evaluating the satisfiability of path constraints Cp (which we do using
Z3 [15]). Therefore, we implement a few strategies to help optimize this com-
putation. The basic constraint solving algorithm (before optimization) is shown
in Algorithm 3, where we conservatively return the result as satisfiable if the
constraint solver returns unknown. Note that this does not result in imprecision
during symbolic execution since the constraint is preserved. It ensures that we
do not eliminate paths that might be feasible but where the constraint solver is
unable to prove a definite result at that stage of symbolic execution.

Abstract Symbolic Execution. The first optimization we have implemented is
abstract symbolic execution, in which an abstract state is kept alongside the
typical symbolic state. In this abstract state, each variable can have one of eight
values {⊥, -, 0, +, -0, -+, 0+, 	} indicating what is known about the variable’s
sign, which are arranged in a complete lattice with the partial order ⊂ such that
⊥ is the meet of all elements of the lattice and 	 is the join of all elements of
the lattice. We show the Hasse diagram for this lattice in Fig. 3.

Fig. 3. Lattice for the abstract domain
used in abstract symbolic execution.

We chose this particular abstract
domain due to the ReLU activation func-
tions: the ReLU choice is determined by
the sign of the input, and the ReLU
determines the sign of its output. These
abstract values are updated alongside the
symbolic values held in the symbolic state;
at any given program point, the abstract
value for each variable will be an over-
approximation of what is known about its
symbolic value.
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Algorithm 4. ConstructExpr(j, k)
� Computes Σn

i=0wi,j,khi,(k−1) + bj,k
� Uses helper function AbsVal to access and modify the abstract values associated with nodes
and concrete values, and AbsEval to compute an abstract mathematical operation on two abstract
values.
Input: j: index of node within layer; k: index of layer

1: expr ←Multiply(Expr(h0,k−1), w0,j,k)
2: AbsVal(expr) ←AbsEval(AbsVal(h0,k−1) × AbsVal(w0,j,k)) � Abstract
3: for i in range(1,n) do
4: expr ←Add(expr, Multiply(Expr(hi,k−1), wi,j,k))
5: AbsVal(expr) ← AbsEval(AbsVal(expr) +
6: AbsEval(AbsVal(hi,k−1) × AbsVal(wi,j,k))) � Abstract
7: end for
8: expr ← Add(expr, bj,k)
9: AbsVal(expr) ←AbsEval(AbsVal(expr) + AbsVal(bj,k))) � Abstract
10: return (expr, AbsVal(expr))

Before checking any SMT formula for satisfiability, the new clause ct is
checked abstractly using its abstract counterpart ct,a, and if ct,a is unsatisfi-
able, then the branch is infeasible and there is no need to invoke Z3. If ct,a is a
tautology, (e.g., − < +), Cp ∧ ct is satisfiable and ct is not added to the path
constraint. Only if ct,a is undetermined then Z3 is invoked on the full constraint.

The method we use to construct symbolic expressions for internal nodes can
be augmented to construct these abstract values as well, as shown in Algo-
rithm 4. The three lines we add specifically for this abstract value computation
are marked with “Abstract”; without these lines, the function computes solely
the symbolic values necessary for symbolic execution. The abstract satisfiability
check is added as lines 1–2 and 13–14 in Algorithm 5.

Model Generation and Checking. In the symbolic execution tree, we define model
m to be a model that satisfies the path constraint of the node under consideration
and mprev as the model that satisfies the path constraint of its parent node.
When checking the satisfiability of a node’s path constraint, first we check if
mprev satisfies that constraint—if so, the constraint is satisfiable and m is set to
be mprev. If not, or if there is no mprev available, we evaluate using Z3 and if it is
satisfiable generate a new model m for this node. The parent model mprev must
satisfy one of the new clauses (together, the clauses cover the entire solution
space) which marks that clause as satisfiable. Note that checking if a model
satisfies a given constraint is faster to compute than checking satisfiability of a
constraint. This approach uses concrete values during symbolic execution similar
to concolic execution [30].

This model generation and check is added as lines 3 and 6 of Algorithm 5.

Overall Constraint Solving Algorithm. Algorithm 5 incorporates both abstract
symbolic execution and model generation as discussed above.
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Algorithm 5. IsSatfinal(Cp, ct, ct,a, mprev)

� Path constraint checking
� Calls an SMT solver (SMTSolve) and a model generation tool (GetModel)
Input: Cp: set of all path constraints from prior branches, ct: new path constraint to check, mprev:
model that satisfies Cp, ct,a: equivalent abstract constraint to ct (details of the construction of
ct,a are provided in the appendix).
Output: Satisfiability of Cp ∧ ct

1: if ct,a = Tautology then return SAT � Next constraint Cp, passes model mprev
2: else if ct,a = Sat then
3: if mprev |= ct then return SAT � Next constraint Cp ∧ ct, passes model mprev
4: else
5: if SMTSolve(Cp ∧ ct) = SAT then
6: m ← GetModel(Cp ∧ ct)
7: return SAT � Next constraint Cp ∧ ct, passes model m
8: else if SMTSolve(Cp ∧ ct) = UNKNOWN then
9: return SAT � Next constraint Cp ∧ ct, no model
10: else return UNSAT
11: end if
12: end if
13: else return UNSAT
14: end if

3.4 Model Counting Approaches

We use two model counting techniques in VerQ2: symbolic and constraint-loop
model counting.

Symbolic Model Counting. Symbolic model counters ABC [4], Barvinok [34],
and LattE [7] compute the full model count for constraints without explicitly
enumerating all solutions. In VerQ2 we use the model counting constraint solver
ABC for part of the model counting. ABC is an automata-based model counter
which constructs a finite-state automaton characterizing the set of solutions to a
constraint. We also test LattE and Barvinok, both of which compute the model
count using Barvinok’s algorithm [11].

Constraint-Loop Model Counting. In this approach, a satisfiability solver is used
iteratively to find the solutions to a constraint formula F by first solving F (using
an SMT-solver such as Z3) to get the model m, then re-solving F ∧ ¬m (¬m
indicates that m cannot be a solution). This iteration continues until either no
more solutions exist or the solver returns UNKNOWN or times out. In general,
if |F | is the model count of F , then the solver is invoked |F | times. We name
this approach constraint-loop model counting. This approach still uses symbolic
constraint solving just like symbolic model counting, but it iteratively produces
one model at a time and must run in a loop to produce a count.

Model Counting Implementation. In our quantitative verification approach, there
are two places where model counting is needed. The first is before symbolic
execution, to obtain a model count of the input constraints (Cin) so that the
robustness can be calculated as a proportion of the total number of perturbed
inputs. The second is at the leaves of the symbolic execution tree, where path
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constraints are conjoined with Cout: at each leaf, we count satisfying solutions
to Cp ∧ Cout.

For the first model count, the constraints are relatively small. For the second
model count, the constraints are generated by symbolic execution to represent
the behavior of the network, and can be large and complex, which impacts the
cost of model counting. However, the initial model count can be leveraged to
allow an inverse model count (|SAdversarialSet|) to compute robustness, which
for a fully or nearly fully robust network can yield small model counts from the
leaves. This property can aid the performance of constraint-loop model counting.
This constitutes counting solutions to Cp ∧ ¬Cout at each leaf.

4 Experimental Evaluation and Discussion

In our experimental evaluation we investigate the following research questions:

RQ1: Which of four integer model counting approaches is the best choice for
counting the constraints generated by neural networks?

RQ2: Do the optimizations we propose improve the symbolic verification time
for neural networks?

RQ3: Does quantitative symbolic robustness verification of neural networks pro-
duce results faster than brute force testing?

RQ4: Does the quantitative symbolic robustness verification approach we pro-
pose in this paper and implement in VerQ2 perform better than the existing
tool Provero [8]?

We trained neural networks using Tensorflow [2] on three different datasets
described below, all obtained from the UCI Machine Learning Repository [16].
The networks are trained with full precision, and then converted to fixed-point.
All tests use values in I8,4.

Dataset Specifics: The Iris dataset [16] contains four real-valued input variables
(normalized to the [0,1] range), and three output classifications. We use this
smaller dataset for comparison to explain our choice of model counting strate-
gies, without the need to run slower model counters on large networks for com-
parison. The Parkinson’s dataset [16,27] contains 22 real-valued input variables
(normalized to the [-1,1] range) and two output classifications. The Wisconsin
Breast Cancer dataset: abbrev. Cancer [16,35] contains 30 real-valued input vari-
ables (normalized to the [-1,1] range) and two output classifications. Accuracies
of all of the tested networks are presented in our code repository.2

VerQ2 Output: Our tool has two ways in which it may produce a robustness
result—it will either report the robustness R as an exact result or as a sound
upper bound. To demonstrate the output produced by VerQ2, we present a few
examples in Table 1, all from the same network.
2 All of the data from the experiments in this paper is available at https://github.

com/mara-downing/ver-q2.

https://github.com/mara-downing/ver-q2
https://github.com/mara-downing/ver-q2
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Table 1. Quantitative robustness results for different inputs computed by VerQ2 for
a network trained from the Parkinson’s dataset with 2 hidden layers, size 15.

|SPerturbRegion| |SAdversarialSet| Exact R Explanation

3,373,232,128 0 Yes 1 The network is fully robust for the region.
2,951,578,112 374 Yes 0.9999999There are exactly 374 misclassifications in the region.
3,855,122,432 10,179 No 0.9999974There are at least 10,179 misclassifications in the region.

Comparison of Model Counters: We first compare 2 model counting approaches
for the initial count of the user’s input constraints: constraint-loop model count-
ing via Z3, and symbolic model counting via ABC. The results are shown in
Fig. 4a. These tests use ten constraints of each size from the Iris constraint set
and only compare the time taken to complete the model count.

A radius of ∞ indicates that values are bounded by the range the inputs
were normalized to when training the network.

These results are intuitive—the constraint-loop approach with Z3 needs to
call Z3 once per model, so a larger count is slower. However, as ABC does not
use this loop approach, all of these constraints can be counted quickly. For all
future tests, we use ABC for the initial model count.

For the leaf counts, we also use the Iris networks and all constraints are of
the form of a two input feature attack, where both input features can be any
value within the normalized range. Results are shown in Fig. 4b. The results
are an average of 10 tests with a 600 s time bound each (ABC can exceed this
since time is checked after each counting task is completed). The # E column
indicates how many are exact counts. Incomplete counts are a sound upper bound

Fig. 4. Model counting performance comparison for input and leaf constraints.
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Fig. 5. Comparison of constraint solving optimization strategies on the Iris networks.
Left shows times for all four levels of optimization, right shows speed up (as in value
times speed up) caused by both optimizations.

on robustness measure R using Z3, as Z3 is counting misclassifications, and a
sound lower bound on R using ABC. Z3 is able to complete all of the tests faster
than ABC. Both tools report some incomplete counts. We additionally tested
the leaf counts using the Barvinok and LattE model counters, but both were
unable to solve simple leaf constraints in under an hour.

These experiments answer RQ1, identifying the best tool choice for both
places where model counting is required: ABC performs better than Z3 for the
initial count, and Z3 performs better than ABC for the leaf counts. All further
experiments use the model counters in this configuration.

Evaluating Effectiveness of Optimization Strategies: For this set of experiments,
we used the networks trained on the Iris dataset [16]. Each test uses 2 perturbed
input features, each allowed to take on any value in the normalized range. Results
are shown in Fig. 5, where HL stands for Hidden Layer(s). The categories are
Base: Time with no optimizations, Abs: Time with abstract symbolic execution
only, MG : Time with model generation only, and All : Time with all optimiza-
tions.

For all tests in Fig. 5, both abstract symbolic execution and model generation
show improvement over the base solving time. The combination of the two shows
an even larger improvement than either one alone. The effectiveness of these
optimizations increases with a higher # of internal nodes, which is expected as
more nodes means more branch points which can benefit from optimization.

We additionally tested these improvements on networks trained from the
Parkinson’s dataset. We allow 3 perturbed input features, which can take on any
value in the normalized range. We remove any tests where both optimized and
unoptimized verification time out. These tests show an average 1.43x speedup.

Finally, we tested these improvements on networks trained on the Cancer
dataset. We allow 5 perturbed input features, which can take on any value in
the normalized range. Additionally, we allow one comparative perturbation—
one specific input value must be greater than another. We remove any tests
where both optimized and un-optimized verification time out. These tests show
an average 1.13x speedup.
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These results answer RQ2, showing that our optimizations produce improve-
ments to symbolic verification time. Furthermore, our optimizations are more
effective with increasing network size.

Comparing VerQ2 with Random Sampling and Exhaustive Enumeration: In this
section, we show that our approach can perform better than random sampling
without replacement and exhaustive concrete enumeration.

For this section, exhaustive concrete enumeration refers to the approach
where all valid quantized inputs within the perturbation region are tested. Mean-
while, random sampling without replacement (once an element has been sampled,
it cannot be chosen again) functions very similarly, but is constrained by a time
bound rather than a sample number and the order in which samples are taken is
randomized. Exhaustive concrete enumeration can thus achieve an exact robust-
ness result by taking the time to check every input, whereas random sampling
without replacement can find a number of correctly classified and incorrectly
classified samples (incorrectly classified divided by |SPerturbRegion| forms a sound
upper bound on the robustness R).

We begin with a set of experiments comparing our approach to exhaustive
concrete enumeration. Our results are shown in Table 2. For this table, we take
160 tests (10 tests per network size, 16 networks) and divide them into three
categories by result, corresponding to the three rows of the table. The first two
rows indicate that VerQ2 obtained an exact robustness result for R and are split
by whether or not R = 1. The last row indicates that VerQ2 obtained a sound
upper bound on R.

Table 2. Comparison of VerQ2 evaluation time with Exhaustive Concrete Enumeration
for 16 Parkinson’s networks, 10 constraints each.

# TestsVerQ2 time (s) Exhaustive Enum time (s)

VerQ2 exact, R = 1 114 55.51 80,820.98
VerQ2 exact, R < 1 5 73.50 90,262.19
VerQ2 sound upper bound 41 1,087.67 91,522.52

Time reported for VerQ2 is an average of all tests in that category, whereas
time reported for exhaustive concrete enumeration is an extrapolation using
the average time per input multiplied by the total number of inputs in the
perturbation region. We used the same 16 network sizes used in Fig. 4b, trained
on the Parkinson’s dataset [16,27], 10 perturbation regions per network, and a
30min timeout. Each constraint allows 11 input features to be perturbed with
a radius of 0.2.

In Table 2 we see that in cases where VerQ2 can obtain an exact result, it is
3 orders of magnitude faster than exhaustive concrete enumeration. To further
analyze the 41 cases for which VerQ2 produces a sound upper bound, we con-
struct an additional experiment in which random sampling without replacement
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is given the exact amount of time as VerQ2 took for each given test to produce
as many misclassifications as possible (if VerQ2 found an exact result for a test
in 2000ms, random sampling without replacement is given 2000ms for that test).

This random sampling strategy iteratively chooses inputs from SPerturbRegion

at random, runs them in the network, and records whether or not they are
classified as expected until the specified time limit. Results are shown in Fig. 6.

With these results, we answer RQ3 affirmatively. Moreover, VerQ2 performs
better than random sampling even excluding cases where the tested region is
fully robust (where VerQ2 obviously outperforms random sampling).

Comparing VerQ2with Provero: We compare VerQ2 with the sampling based
tool Provero [8]. Given a threshold θ of proportion of adversarial (misclassi-
fied) inputs within a perturbation region, Provero can report with a degree of
confidence measured by parameters η and δ whether or not the proportion of
adversarial inputs is above or below a threshold θ. η is an additive precision on
the threshold θ and δ is the level of probabilistic certainty necessary to consider
a threshold proved or disproved. Provero is not specifically designed for our
purpose, but it is an existing and effective robustness tool which does not rely on
properties of floating point or binary neural networks and thus can be adapted
as a baseline comparison.

Fig. 6. Comparison with random sampling approach. VerQ2 shows improvement in
the green sections. Left: All tests; Right: All nonrobust (R < 1) tests.

For this comparison, we re-implement the Provero algorithm since the
original tool does not support inequality-based perturbation region constraints
and fixed-point input feature values. Additionally, since Provero requests an
expected robustness threshold to be given by the user (θ), and our approach
produces this threshold automatically, we set up a binary search loop where θ
starts at 0.5 and then is modified as thresholds are proven or disproven.

We report our results for comparison with Provero in Table 3 and divide the
rows of this table in the same way as Table 2. We report our results for the first
two rows with the time taken by Provero and the distance between the upper
and lower R discovered using the binary search. For example, if Provero can
probabilistically prove that the robustness measure R is bounded by 0.751 ≤ R <
0.764, we report 0.013 difference between the upper and lower bound (robustness
range in Table 3, averaged across all 114 or 5 cases in the row).
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Table 3. Comparison of VerQ2 with Provero, using parameters η = 0.001 and δ =
0.01 for Provero as well as a binary search loop to find the closest probabilistically
provable thresholds.

# TestsVerQ2 Provero (η = 0.001, δ = 0.01)
time (s) time (s) Avg. Rob. Range Avg. Upper Bound Diff.

VerQ2 exact, R = 1 114 55.51 1,800.00 0.00195 NA
VerQ2 exact R < 1 5 73.50 1,800.00 0.00195 NA
VerQ2 sound upper bound 41 1,087.67 1,715.24 NA 0.056

In Table 3, we also show the 41 cases for which VerQ2 reports a sound
upper bound, and display here the average difference obtained by subtracting
Provero’s upper bound on R from our upper bound on R. For example, if
Provero can probabilistically prove that the robustness measure R is bounded
by 0.751 ≤ R < 0.764 and VerQ2 reports a sound upper bound on the robust-
ness at 0.771, we report 0.771 − 0.764 = 0.017 as the upper bound difference in
Table 3 (averaged across all 41 cases in the row).

We use δ as 0.01, the level used in [8]. We test η as 0.001, the most precise
value used in [8]. For all tests, we give a 30min timeout to match the timeout
for VerQ2 on these networks, and we report the results at timeout (or stop early
if the robustness range becomes ≤ η).

From Table 3 we can see that our approach outperforms Provero both by
time and by precision for cases where we get an exact result—in all of these
cases, we are able to produce a sound and exact result, whereas Provero is
only able to bound the result and is producing probabilistic guarantees rather
than fully sound guarantees on these bounds. For the cases where we get an
upper bound, we show that our approach is faster than Provero as well, and
additionally that, while it is expected Provero’s approach will produce a more
precise upper bound by being able to sample and prove probabilistic results
instead of counting individual models, ours is not much higher on average.

With these results, we answer RQ4 and show that our approach performs
better than Provero on cases where we can produce an exact result and com-
parable on cases where we produce a sound upper bound.

5 Discussion

Within our experiments, we evaluate different model counting approaches and
find the most effective for quantized networks (RQ1) and we show how our
constraint solving optimizations improve our quantitative verification (RQ2).
We additionally demonstrate how our technique can perform better than two
forms of brute force testing (RQ3) and an existing published tool [8] (RQ4).

It is known that worst case complexities of many symbolic verification tech-
niques are exponential. However, worst case exponential complexity has not
excluded verification techniques from transition to practice. For our approach,
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we have a worst-case complexity of O(3|N |) calls to a constraint solver, where |N |
is the number of nodes in N minus the input nodes. However, despite this high
worst-case complexity, within existing networks and local perturbation regions
the actual calls to the constraint solver are far fewer.

6 Conclusion

We present a symbolic execution and model counting based approach for quan-
titative verification of quantized neural networks, and its implementation in
VerQ2. Given a user-defined robustness property for a network, we compute the
proportion of inputs in the perturbation region that do not change the output
of the network, which provides a quantitative measure of robustness. We present
translations from fixed-point constraints to equivalent integer constraints so that
we can use integer model counting to produce quantitative results. We have com-
pared the performance of different model counting approaches on the quantized
network constraints, and also our own improvements to constraint solving within
symbolic execution. Additionally, we have compared our approach against two
brute-force sampling approaches and an existing tool for quantitative floating
point neural network verification modified for quantized values and found our
approach performs favorably against all three. To the best of our knowledge,
VerQ2 is the first quantitative verifier for quantized networks with more than
binary precision.

References

1. Artificial intelligence and machine learning (ai/ml)-enabled medical devices.
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-
intelligence-and-machine-learning-aiml-enabled-medical-devices. Accessed 4 Dec
24

2. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation ({OSDI}
16), pp. 265–283 (2016)

3. Amir, G., Wu, H., Barrett, C., Katz, G.: An smt-based approach for verifying
binarized neural networks. In: Tools and Algorithms for the Construction and
Analysis of Systems: 27th International Conference, TACAS 2021, Proceedings,
Part II 27, pp. 203–222 (2021)

4. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string con-
straints. In: International Conference on Computer Aided Verification, pp. 255–272
(2015)

5. Bacchus, P., Stewart, R., Komendantskaya, E.: Accuracy, training time and hard-
ware efficiency trade-offs for quantized neural networks on fpgas. In: International
Symposium on Applied Reconfigurable Computing, pp. 121–135 (2020)

6. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. (CSUR) 51(3), 1–39 (2018)

7. Baldoni, V., et al.: A user’s guide for latte integrale v1.7.2. Optimization 22(2)
(2014)

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices


144 M. Downing et al.

8. Baluta, T., Chua, Z.L., Meel, K.S., Saxena, P.: Scalable quantitative verification
for deep neural networks. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pp. 312–323 (2021)

9. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification
of neural networks and its security applications. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1249–1264
(2019)

10. Baranowski, M., He, S., Lechner, M., Nguyen, T.S., Rakamarić, Z.: An smt the-
ory of fixed-point arithmetic. In: International Joint Conference on Automated
Reasoning, pp. 13–31 (2020)

11. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhe-
dra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994), http://
www.jstor.org/stable/3690312

12. Bu, H., Sun, M.: Measuring robustness of deep neural networks from the lens
of statistical model checking. In: 2023 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE (2023)

13. Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J., Kohli, P.: Branch and
bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21
(2020)

14. Chen, S., Wong, E., Kolter, J.Z., Fazlyab, M.: Deepsplit: scalable verification of
deep neural networks via operator splitting. IEEE Open J. Control Syst. 1, 126–140
(2022)

15. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340
(2008)

16. Dua, D., Graff, C.: Uci machine learning repository (2017). http://archive.ics.uci.
edu/ml

17. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach
to scalable verification of deep networks. In: UAI, vol. 1, p. 3 (2018)

18. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy, pp. 3–18 (2018)

19. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In:
International Symposium on Software Testing and Analysis, pp. 166–176 (2012)

20. Giacobbe, M., Henzinger, T.A., Lechner, M.: How many bits does it take to quan-
tize your neural network? In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, vol. 12079 (2020)

21. Gopinath, D., Pasareanu, C.S., Usman, M.: Quantifyml: how good is my machine
learning model? In: 30th International Symposium on Software Testing and Anal-
ysis (ISSTA) (2021)

22. Guo, Y.: A survey on methods and theories of quantized neural networks. arXiv
preprint arXiv:1808.04752 (2018)

23. Henzinger, T.A., Lechner, M., Žikelić, -D.: Scalable verification of quantized neural
networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
pp. 3787–3795 (2021)

24. Jia, K., Rinard, M.: Efficient exact verification of binarized neural networks. Adv.
Neural. Inf. Process. Syst. 33, 1782–1795 (2020)

25. Jia, K., Rinard, M.: Exploiting verified neural networks via floating point numerical
error. In: International Static Analysis Symposium, pp. 191–205 (2021)

http://www.jstor.org/stable/3690312
http://www.jstor.org/stable/3690312
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1808.04752


Quantitative Verification for Quantized Networks 145

26. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: International Conference on Computer Aided Verification,
pp. 443–452 (2019)

27. Little, M., McSharry, P., Roberts, S., Costello, D., Moroz, I.: Exploiting nonlin-
ear recurrence and fractal scaling properties for voice disorder detection. Nature
Precedings, p. 1 (2007)

28. Lyell, D., Coiera, E., Chen, J., Shah, P., Magrabi, F.: How machine learning is
embedded to support clinician decision making: an analysis of fda-approved medical
devices. BMJ Health Care Inform. 28(1) (2021)

29. Păsăreanu, C., Converse, H., Filieri, A., Gopinath, D.: On the probabilistic analysis
of neural networks. In: Proceedings of the IEEE/ACM 15th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, pp. 5–8
(2020)

30. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. ACM
SIGSOFT Softw. Eng. Notes 30(5), 263–272 (2005)

31. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Programm. Lang. 3(POPL), 1–30 (2019)

32. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
IEEE Trans. Evol. Comput. 23(5), 828–841 (2019)

33. Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., Kroening, D.: Con-
colic testing for deep neural networks. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pp. 109–119 (2018)

34. Verdoolaege, S.: The barvinok model counter (2017)
35. Wolberg, W., Mangasarian, O., Street, N., Street, W.: Breast Cancer Wisconsin

(Diagnostic). UCI Machine Learning Repository (1995)
36. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: Bdd4bnn: a bdd-based quantita-

tive analysis framework for binarized neural networks. In: International Conference
on Computer Aided Verification, pp. 175–200 (2021)



Graph Convolutional Network
Robustness Verification Algorithm Based

on Dual Approximation

Dongdong An1, Hao Zhang1, Qin Zhao1, Jing Liu2, Jianqi Shi2,3(B),
Yanhong Huang2, Yang Yang2, Xu Liu3, and Shengchao Qin4,5

1 Shanghai Engineering Research Center of Intelligent Education and Bigdata,
Shanghai Normal University, Shanghai 200234, China

{andongdong,1000548861,q zhao}@shnu.edu.cn
2 Shanghai Key Laboratory of Trustworthy Computing, East China Normal

University, Shanghai 200062, China
{jliu,yhhuang}@sei.ecnu.edu.cn, yang.yang@ntesec.ecnu.edu.cn

3 Shanghai Formal-Tech Information Technology Co., LTD., Shanghai, China
jqshi@sei.ecnu.edu.cn, xu.liu@formal-tech.com

4 Guangzhou Institute of Technolog, Xidian University, Shaanxi, China
5 ICCT and ISN Laboratory, Xidian University, Shaanxi, China

Abstract. With the continuous development of Graph Neural Network
(GNN) technologies, securing their robustness is crucial for their broad
adoption in practical applications. Although various verification methods
for training GNNs have been proposed, studies indicate that Graph Con-
volutional Networks (GCNs) remain vulnerable to adversarial attacks
affecting both graph structure and node attributes. We propose a novel
approach to verify the robustness of GCNs against perturbations in node
attributes by employing a dual approximation technique to convexify
nonlinear activation functions. This transformation changes the original
non-convex problem into a more manageable convex forms. We start by
applying linear relaxation to convert fixed-value features in each GCN
layer into variables suitable for optimization. Next, we reframe the task
of identifying the worst-case margin for a graph as a linear problem,
which we solve using linear programming techniques. Given the discrete
nature of graph data, we define a perturbation space that extends the
data domain from discrete to continuous values. To improve the accuracy
of the convex relaxation, we use a dual approximation algorithm to set
bounds on the optimizable variables. Our method certifies the robustness
of nodes against perturbations within a specified range and significantly
improves verification accuracy compared to previous approaches. This
method surpasses previous work in verification accuracy and is distinc-
tively tailored to address the S-curve, an aspect less explored in prior
research. Experimental results show that our method significantly refines
the precision of robustness verification for GCNs.
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1 Introduction

In recent years, the continuous development of deep learning has positioned
GNNs at the forefront of research, as they combine deep learning [1] with graph
data processing. With their strong representational capacity, graphs serve as
a method of big data storage, and GNNs have emerged as an innovative app-
roach for analyzing features and interactions between different entities. They
have begun to offer new solutions across multiple real-world applications, such
as product recommendation [2], credit assessment [3], biopharmaceuticals [4],
and traffic flow prediction [3]. However, GNNs face a significant challenge: they
are vulnerable to adversarial attacks. This vulnerability notably impedes their
practical deployment. Numerous empirical methods aim to enhance the robust-
ness of GNNs, inadvertently setting off an arms race in GNN attack and defence
strategies. To address this, a robustness guarantee is required to ensure accurate
GNN predictions within a certain range of disturbances.

Over-approximation-based GNNs have undergone extensive study [5,9]. For
robustness verification, they calculate certificates for all test nodes in the testing
phase to determine the number of nodes that remain secure amidst attribute
perturbations. Over-approximation methods inherently introduce some overes-
timation, as illustrated in Sect. 2.2. An approximation that has an upper bound
above the actual maximum value or a lower bound below the actual minimum
introduces significant overestimation. Minimizing this overestimation is critical
to preventing failures. Unlike traditional verifiable approaches, when considering
GNNs, we must account for the relational dependency among graph nodes, as
modifications to a single node can impact the representation of its neighbors.
Furthermore, the discrete nature of graph data, specifically the challenging L0

constraint in perturbations, and the influence of semi-supervised learning on
verification, present obstacles.

To overcome the challenges above, this paper propose a method for the
verifiable robustness of GCNs against node attribute perturbations. Employ-
ing dual approximation, we convert non-linear activation functions into their
convex forms, allowing for efficient problem-solving. We begin with linear relax-
ation to turn each GCN layer’s fixed-value features into optimizable variables,
then transform the problem of graph margin into a linear format solvable via
linear programming. The discrete nature of graph data necessitates introduc-
ing a perturbation space, prompting a shift from discrete to continuous data
domains. Further, a dual approximation algorithm calculates the constraints for
these optimizable variables, thereby refining the convex relaxation. Our results
emphasize the algorithm’s efficacy, demonstrating a 17.2% increase in accuracy
compared to traditional training methods.

In summary, this paper’s main contributions are threefold:

1. We propose a method for verifying the robustness of GCNs relevant to node
attribute perturbations, converting S-shaped activation functions into convex
format and utilizing linear programming for verification.
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2. We propose a linear relaxation method based on approximation domains to
reduce the overestimation of function outputs, thus enhancing verification
precision.

3. We have improved the accuracy of validation nodes with a maximum discrep-
ancy of approximately 12%. We have reduced the propagation of overestima-
tion across layers with the maximum difference reaching up to 17%.

This paper is organized as follows: Sect. 2 reviews current literature on adver-
sarial GCNs and formal verification in this realm. Section 3 lays the foundational
knowledge by including adversarial GCNs and robustness verification methods.
Methods for convex relaxation of GNNs, the application of dual approximation
for activation bound calculations, and linear programming for margin maxi-
mization are delineated in Sect. 4. Section 5 details experiments conducted with
relevant datasets. Finally, the paper concludes by summarizing the key findings
and discussing future extensions of this work.

2 Related Work

2.1 Graph Neural Network Robustness Verification Methods

The adversarial training strategies previously introduced are heuristic and
demonstrate empirical benefits. However, even if current attacks fail, it remains
uncertain whether adversarial examples exist. In [5], they raised a question
regarding the security of nodes in a graph under any acceptable perturbation of
their neighbouring nodes’ attributes. To address this question, for each node v
and its corresponding label yv, they aimed to calculate the upper bound of the
maximum margin loss precisely.

While [5] focused solely on perturbations to node attributes, [7] addressed
scenarios where attackers manipulate only the graph structure. [10] derived
robustness certificates (akin to the upper bound of the maximum margin loss)
as linear functions of personalized PageRank, facilitating easier optimization.
[14] also sought to prove the robustness of Graph Neural Networks under graph
structure perturbations, successfully solving the certification problem using a
joint-constrained bilinear programming method. Drawing inspiration from the
concept of random smoothing [9,13] achieved provable robustness for graphs
under structural perturbations. Meanwhile, [8] considered the sparsity of graph
data during the certification process, enhancing the efficiency and accuracy of
certifications against attacks on graph features and structure. [12] introduced
an immunization method to improve the provable robustness of graphs. Addi-
tionally, there has been research on the certifiable robustness of GNNs in other
applications, such as community detection [11].

Our algorithm expanded the scope of verifiable models for robustness vali-
dation compared to previous work, especially [5]. Previous work could not be
applied to models using sigmoid as the activation function, but our work has
expanded this application and can complete robustness validation of models
using sigmoid function. At the same time, our method has significantly improved
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validation accuracy in multi-layer GCN models by reducing overestimation of the
activation function compared to other methods targeting sigmoid.

2.2 Approximate Tightness

Neural network verification methods predicated on over-approximation inher-
ently entail a certain degree of overestimation, as delineated in the section con-
cerning Sect. 2.2. For an approximation of an activation function, should the
maximum of its upper bound exceed the actual maximum value or the min-
imum of its lower bound fall below the actual minimum value, then such an
approximation is deemed imprecise, introducing undue overestimation.

Reducing the overestimation of approximations is crucial for minimizing fail-
ures. The tightness concept encapsulates the approximation accuracy charac-
teristic [23]. Significant efforts have been made to define the closest possible
tightness. Definitions of tightness can be categorized into two types: neuronal
and network.

1) Neuronal Tightness: The tightness of an approximation for an activation
function can be measured independently. Given the activation function σ(x) and
two upper bounds hU (x) and h

′
U (x) over the interval [l, u], hU (x) is definitively

tighter than h
′
U (x) if hU (x) < h

′
U (x) for any x in [l, u] [17]. However, when

hU (x) and h
′
U (x) intersect, their tightness becomes incomparable. An additional

measure of neuronal tightness is the area of the gap between the bounds and the
activation function, which is

∫ u

l
(hU (x) − σ(x)) dx.

A smaller area indicates a tighter approximation [15,18]. Notably, according
to the definition in [17], an over-approximation that is tighter by one definition
is also tighter by the definition in [15], and vice versa. More importantly, another
metric is the output range of the linear bounds. If the approximation maintains
the same output range as the activation function, it is considered the tightest
[23].

2) Network Tightness: Recent research has shown that the tightness of neu-
rons does not always guarantee that the composition of all approximations of
activation functions in a network is also tight [23]. This finding explains why
methods deemed the tightest based on measures of neuronal tightness achieve
optimal verification results only for certain networks.

Unfortunately, finding the tightest approximation across a network has been
proven to be a non-convex optimization problem, thereby incurring a high com-
putational cost [17,23]. From a practical standpoint, a neuron-wise tight approx-
imation is useful if the composition of all neurons is also tight across the network.

3 Preliminaries

3.1 Neural Network Robustness Verification

Despite the challenges in verifying the correctness of DNNs, formal verification
remains vital in confirming their safety-critical attributes. Among the most cru-
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cial attributes is robustness, which signifies that the predictions of a neural net-
work remain unchanged even when inputs are manipulated within a reasonable
range:

Definition 1. (Neural network robustness verification). A neural network
F : Rn → R

m is said to be robust if it accepts an input x0 and a range Ω regarding
x0 such that for all x ∈ Ω, Φ(x) = Φ(x0).

Typically, the input region Ω centered around an input x0 is defined by
a ball with radius ε in the �p norm, centered at x0, that is:Bp(x0, ε) ={

x | ‖x − x0‖p ≤ ε
}

.
Assuming the output label of x0 is c, i.e., Φ (x0) = c, demonstrating the

robustness of F as defined in the context of neural network robustness verification
amounts to proving that for all x in Ω, and every � in L\{c}, Fc(x)−F�(x) > 0.
This condition verifies that for every input within the range Ω, the network’s
output for the correct class c surpasses that of any other class �, thereby ensur-
ing the stability of the network’s predictions within this specified input domain.
Hence, the verification challenge is equivalent to addressing the following opti-
mization problem:

min
x∈Ω

(Fc(x) − max
�∈L/c

(F�(x))) (1)

We can conclude that robustness is maintained within Ω if the result is
positive. Otherwise, it implies that within Ω, there exists some variation of
inputs for which there exists some �′ ∈ L \ {c} such that F�′(x′) ≥ Fc(x′). This
means the probability of classifying the variation as �′ is greater than or equal to
the probability of classifying it as c. Therefore, the variation could be classified
as �′. This indicates that the variation does not exhibit robustness within Ω.

In this paper, given that the node features of graphs are typically measured
using the l0 norm, this necessitates a much larger ε radius for our sphere than
is customary, where ε is often a fraction. Works on classical neural networks
constrain adversarial examples to a small ε-ball around the original sample,
such as under the l∞ norm or l2 norm [6,24,25], typically with ε < 1. This is
impractical in our binary setup, as ε < 1 implies that no attribute can change. To
allow for reasonable perturbations in binary/discrete settings, variations much
larger than the ε-balls considered so far must be permitted.

The optimization problem in Eq. (1) is computationally expensive, and cal-
culating an exact solution is often impractical. The fundamental reason for
the high computational complexity lies in the non-linearity of the activation
function σ(x). Even when σ(x) is piecewise linear, such as the commonly used
ReLU (σ(x) = max(x, 0)), the problem is NP-complete [16]. A practical solution
to simplify the verification problem involves over-approximating through lin-
ear constraints and symbolic propagation, transforming it into a solvable linear
programming problem that can be efficiently addressed [19,20].



Graph Convolutional Network Robustness Verification Algorithm 151

Definition 2. (Linear over-approximation). Let σ(x) be a nonlinear func-
tion over the interval [l, u], and let hL(x) = αLx + βL and hU (x) = αUx + βU

be two linear functions with some αL, βL, αU , βU ∈ R. hL(x) and hU (x) are
referred to as the lower and upper linear bounds of σ(x) over [l, u], respectively,
if hL(x) ≤ σ(x) ≤ hU (x) applies for all x in [l, u].

Based on Definition 2, we can simplify Eq. (1) into the following effective and
solvable linear optimization problem. It’s important to note here that z(i)(x)
represents an interval, not a singular value:

min
(
min

(
z
(m)
c (x)

)
− max

(
z
(m)
� (x)

))

s.t. z(i)(x) = W (i)ẑ(i−1)(x) + b(i), i ∈ 1, . . . , m

h
(i)
L (x) ≤ ẑ(i)(x) ≤ h

(i)
U (x), i ∈ 1, . . . , m − 1

x ∈ Ω, � ∈ L/c, ẑ(0)(x) = [x, x]

(2)

In this paper, however, due to the discrete nature of the data domain, directly
addressing the problem (2) remains challenging.

3.2 Slicing Matrices and Slicing Graph Convolutional Neural
Networks

GNN learning can further be utilized for the embedding of sections (or graphs) in
downstream applications, yet our focus is on GNNs used for node classification
in semi-supervised scenarios. A representative example is the GCN. GCN for
node classification take a partially labeled attribute graph as input and return
the probabilities of nodes belonging to specific categories. Specifically, we assume
each node belongs to one class c ∈ κ = {1, 2, . . . ,K}, and the nodes in the graph
are divided into labeled and unlabeled sets.

We represent an attributed graph as G = (X,A), where X ∈ R
N×D represents

the feature matrix for N nodes, with each row i being the D-dimensional feature
vector associated with node i. A ∈ {0, 1}N×N is the adjacency matrix of the
graph.

A GCN is a multi-layer neural network represented by fw, parameterized by
W , which takes an attributed graph G as input and generates a vector Yi =
(y1

i , . . . , yK
i ) for each node i, where yc

i is the probability that node i belongs to
class c.

For a GCN with L layers, the output H
(L)
t of node t depends only on the

nodes within its L − 1 hop neighborhood NL−1(t). Therefore, at each step, we
can “slice” the matrices X and Â(l) to only include the entries required for
computing the output of the target node t.

Ȧ(l) = Â
(l)
NL−l(t),NL−l+1(t)

for l = 1, . . . , L − 1, Ẋ = XNL−1(t) (3)

where the set indices correspond to slicing rows and columns of the matrix. Here,
Ã = A + In×n is the adjacency matrix with self-loops added, D̃ is the degree
matrix of Ã, and Â = D̃− 1

2 ÃD̃− 1
2 is the normalized adjacency matrix. As l (i.e.,
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the network depth) increases, the slicing of A(l) becomes smaller, and in the final
step, we only need the one-hop neighbours of the target node.

With the sliced adjacency matrix and sliced feature matrix in hand, the sliced
Graph Convolutional Network (GCN) can be further defined as follows:

Ĥ(l) = Ȧ(l−1)H(l−1)W (l−1) + bl−1 for l = 2, . . . , L (4)

H
(l)
nj = σ(Ĥ(l)

nj ) for l = 2, . . . , L − 1 (5)

where H(1) = Ẋ, and Ĥ(l) is the input before activation by the Sigmoid activa-
tion function.

3.3 Approximation Domain

Cumulative propagation primarily occurs for two reasons [26]. One apparent
reason is the over-approximation of activation functions, which is inevitable but
can be minimized by defining strict functions. Another reason is that over-
approximation must be defined on the overestimated domain of the activa-
tion functions to ensure their robustness. As the overestimation of the domain
increases, this further introduces an overestimation of the approximation val-
ues. Due to the layer dependencies in neural networks, this dual overestimation
accumulates and propagates to the output layer.

We introduce the concept of an approximation domain to represent the
domain of the activation function on which the over-approximation is defined.

Definition 3. (Approximation domain). Given a neural network F and an
input region B∞(x0, ε), the approximation domain for the i-th hidden neuron in
the i-th layer is [l(i)r , u

(i)
r ], where,

s.t. z(j)(x) = W (j)ẑj−1(x) + b(j), j ∈ 1, ..., i

hL(z(j)(x)) ≤ ẑ(j)(x) ≤ hU (z(j)(x)), j ∈ 1, ..., i − 1

x ∈ B∞(x0, ε), ẑ(0)(x) = x

Definition 3 elaborates on the method used by existing over-approximation
approaches [15,21–23] to compute the overestimated domain of activation func-
tions for defining their over-approximations. Given two different approximation
domains [lr, ur] and [l

′
r, u

′
r], we say [lr, ur] is more precise than [l

′
r, u

′
r] if lr ≤ l

′
r

and ur ≥ u
′
r.

We demonstrate the interdependence between the issues of defining a strict
over-approximation for an activation function and computing a precise approxi-
mation domain. This interdependence implies that a stricter over-approximation
of the activation function leads to a more precise approximation domain and vice
versa.
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A tighter approximation obtained through the definition in [17], based on
stricter bounds, results in an approximation that is also tighter by the definition
based on minimum area in [15].

Based on the work in [26], we can derive tighter approximations lead to
more precise approximation domains for neurons’ activation functions in subse-
quent DNN layers and more precise approximation domains lead to tighter over-
approximations of the activation function. Clearly, if we can reduce the overesti-
mation of the approximation domain, there will be a tighter over-approximation.

4 Methods

4.1 GCN Robustness Verification Algorithm

Given that graph data often have binary or discrete features, it’s not feasible
to directly use norm constraints to define the perturbation space. Inspired by
existing work in the domain of graph adversarial attacks [4,5], such a perturba-
tion space is defined by limiting the number of features that can be perturbed.
Specifically, this is measured by a parameter Q ∈ R representing the change
in the L0 norm of Ẋ before and after perturbation. Here, Ẋ includes all nodes
of the target node and its L − 1 hop neighbors because, in the field of graph
learning, the embedding representation of a single node in a GCN with L lay-
ers is not only related to itself but also influenced by its L − 1 hop neighbors.
Therefore, the parameter Q measures a global perturbation space. Additionally,
to avoid excessive perturbation of any single node’s features, it’s necessary to
define a local perturbation space further to limit the perturbation of individual
node features from being too large. This constraint can be implemented through
a parameter q ∈ R.

Based on the above discussion, the feature perturbation space can be defined
in the following form:

Xq,Q(Ẋ) =
{

X̃ | X̃nj ∈ {0, 1} ∧ ‖X̃ − Ẋ‖0 ≤ Q

∧
∥
∥
∥X̃n: − Ẋn:

∥
∥
∥
0

≤ q, ∀n ∈ NL−1

}
.

(6)

Given a graph G, a target node t, and a GCN parameterized by θ. Let y∗

denote the class of node t (for instance, provided by ground truth or predicted).
Under a set of permissible perturbations to node attributes, χ̂q,Q, the worst-
case margin achievable between class y∗ and any other class y is given by the
following formula:

mt (y∗, y) :=minimiz
X̃

f t
θ(X̃, Ȧ)y∗ − f t

θ(X̃, Ȧ)y

subject to X̃ ∈ χ̂q,Q(Ẋ)
(7)

Building on the work presented in [5], we further obtain:
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m̂t (y∗, y) := minimiz
X̃,H(·),Ĥ(·)

Ĥ
(L)
y∗ − Ĥ(L)

y = c�Ĥ(L)

subject to X̃ ∈ χ̂q,Q(Ẋ),
[
H(·), Ĥ(·)

]
∈ Zq,Q(X̃)

(8)

4.2 Convex Relaxation of Activation Functions

To render the Eq. (8) convex and thus solvable efficiently, this paper necessitates
convex relaxation of the Sigmoid activation function, adopting the approach
proposed in [6]. The core idea is to treat matrices H(·) and Ĥ(·) as optimizable
variables rather than fixed values. From this perspective, Eq. (5) transforms into
a set of constraints that these variables must satisfy. Subsequently, the non-linear
Sigmoid activation function is relaxed into a convex hull.

Specifically, considering the Eq. (5), Ĥ
(l)
nj represents the input to the Sigmoid

activation function. Assuming the possible perturbation space, we can obtain
the upper bound S

(l)
nj and lower bound R

(l)
nj for this input Ĥ

(l)
nj , as well as the

upper bound hLnj
(Ĥ(l)

nj ) and lower bound hUnj
(Ĥ(l)

nj ) for the output H
(l)
nj , where:

hLnj
(Ĥ(l)

nj ) = αLnj
(Ĥ(l)

nj ) + βLnj

hUnj
(Ĥ(l)

nj ) = αUnj
(Ĥ(l)

nj ) + βUnj

The result of the Sigmoid function can be relaxed into a convex hull as follows:

S
(l)
nj ≤H

(l)
nj ≤ R

(l)
nj

hLnj
(Ĥ(l)

nj ) ≤Ĥ
(l)
nj ≤ hUnj

(Ĥ(l)
nj )

Fig. 1. Convex relaxation

This concept can be illustrated by Fig. 1. It can be observed that H is no
longer a deterministic output of the Sigmoid activation function but rather an
optimizable variable constrained within a certain range.
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4.3 Activation Function’s Upper and Lower Bounds

A key component of our method involves defining the computation of relaxed
boundaries R(l) and S(l) for activations within a GCN, which remains to be spec-
ified. Similarly, existing bounds for classical neural networks are not applicable as
they neither consider L0 constraints nor account for adjacent instances. Obtain-
ing good upper and lower bounds is crucial for achieving robustness proofs, as
tighter upper bounds lead to smaller relaxation errors in GNN activations.

Although through Eq. (8), we relaxed the condition of the discreteness of
node attributes X in the linear programming framework, it has been demon-
strated that the binary nature of data can be leveraged for the boundaries.
More precisely, for each node m ∈ NL−2(t), we compute the upper bound S

(2)
mj

for potential dimension j on the second layer:

S
(2)
mj = sum top Q ([

˙
A

(1)
mnŜ

(2)
nji]n∈N1(m),i∈1,...,q) + Ḣ

(2)
mj (9)

Ŝ
(2)
nji = i-the largest

((
1 − Ẋn:

)
	

[
W

(1)
:j

]

+
+ Ẋn: 	

[
W

(1)
:j

]

−

)

(10)

In the context provided, i-the largest(·) refers to selecting the ith largest
element from the corresponding vector, and sum top Q(·) denotes the sum of
the top Q largest elements from the corresponding list. The first term in the sum
of Eq. (9) represents the upper bound of the change/increase in the activation
of node and hidden dimension j in the first hidden layer for any permissible
perturbation on the attributes Ẋ. The second term is the hidden activation
obtained from the (calm) input X.

Similarly, for the lower bound, we use the following approach:

R
(2)
mj = − sum top Q ([

˙
A

(1)
mnR̂

(2)
nji]n∈N1(m),i∈1,...,q) + Ḣ

(2)
mj (11)

R̂
(2)
nji = i-the largest

(

Ẋn: 	
[
W

(1)
:j

]

+
+

(
1 − Ẋn:

)
	

[
W

(1)
:j

]

−

)

(12)

Since their inputs are no longer binary for the subsequent layers, we adopt
the bounds proposed in [25] for their calculation. Extending these to GCN, we
obtain:

R(l) = Ȧ(l−1)

(

Rl−1
[
W

(l−1)
+

]
− S(l−1)

[
W (l − 1)

]

−

)

S(l) = Ȧ(l−1)

(

Sl−1
[
W

(l−1)
+

]
− R(l−1)

[
W (l − 1)

]

−

)

for l = 3, . . . , L − 1

(13)
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4.4 Utilizing Under-Approximation for Tight over-Approximation
in GCN Robustness Verification

Given that the tightness of convex relaxation approximations significantly influ-
ences the precision with which we can judge node robustness, it is crucial to
enhance tightness as much as possible. We utilize the dual approximation app-
roach introduced in [26] to define tight over-approximations of activation func-
tions guided by under-approximation.

For each activation function, we calculate both an overestimated and
an underestimated approximation domain, represented as [lover, uover] and
[lunder, uunder], respectively. The underestimated domain provides valuable infor-
mation for defining tight over-approximations. Let h(x) be a linear lower or upper
bound for σ over the interval [lover, uover]. Suppose it satisfies the conditions in
Definition 2. In that case, we consider it as a lower or upper bound for the
linear over-approximation on the approximation domain [lover, uover]. Accord-
ing to Theorem ??, we can define a tighter bound on [lover, uover] than one
defined on [lover, uover], and ensure an effective over-approximation boundary on
[lover, uover]. Therefore, we refer to this as the dual approximation method using
the underestimated domain to guarantee the tightness of over-approximations
and the approximation domain to ensure the robustness of over-approximations.

Assuming the input’s lower approximation domain is [lunder, uunder] and the
upper approximation interval is [lover, uover], as described in [21], we consider
three scenarios based on the relationship between σ′(lover), σ′(lover), and k,
where k = σ(uover)−σ(lover)

uover−lover
. Algorithm ?? displays the pseudo-code for the dual

approximation.

1. When σ′(lover) < k < σ′(uover), the line connecting the two endpoints serves
as the upper bound. For the lower bound, if it is feasible, the tangent at the
point is taken; otherwise, the tangent intersecting with (uover, σ(uover)) is
chosen.

2. When σ′(lover) > k > σ′(uover), the line connecting the two endpoints serves
as the lower bound. For the upper bound, if feasible, the tangent line at the
point is taken; otherwise, the tangent intersecting with (lunder, σ(lunder)) is
chosen.

3. When σ′(lover) < k and σ′(uover) < k, we first consider the upper bound. If
the tangent of the polynomial is reliable, we choose it as the upper bound;
otherwise, we select the tangent that intersects with (lunder, σ(lunder)). Then,
we consider the lower bound. If it is reasonable, the tangent at that point is
taken; otherwise, the tangent intersecting with (uover, σ(uover)) is chosen.

5 Experiment

5.1 Experimental Dataset

This paper experiments1 on two graph datasets widely used in graph learning
research: Cora and Karate. For each node in these datasets, 1% of the features are
1 https://github.com/cloud-rise-world/VRP.git

https://github.com/cloud-rise-world/VRP.git
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allowed to be perturbed, that is, q = 0.01d, where d represents the dimensionality
of the input features. Different values of Q are set for global perturbations to
observe their effects.

5.2 Experimental Setup

To ensure a fair comparison between the dual approximation algorithm, which
requires the use of the Monte Carlo method to generate multiple samples and
thus consumes more resources, and the NeWise method, the number of generated
samples by the Monte Carlo method was reduced in the experiments. The size
of Sn, the sample set, was set to 10% of the dataset size.

For the same GCN model, we apply both the dual approximation robust-
ness verification algorithm and the NeWise approximation robustness verifica-
tion algorithm to validate its robustness. The comparison between these two
algorithms is conducted by examining the proportion of robust nodes relative to
the total number of nodes, assessing the effectiveness of each algorithm.

Additionally, we consider different values of L to compare the robust nodes
obtained by the dual approximation algorithm and the NeWise algorithm. This
comparison helps to highlight the advantages of the dual approximation algo-
rithm in reducing overestimation.

5.3 Verify the Robustness of GCN

Robustness verification of the GCN model is conducted using the dual approxi-
mation robustness verification algorithm and the NeWise approximation robust-
ness verification algorithm proposed in this paper.

Fig. 2. L = 2 changes in robust nodes

Figure 2 illustrates how the GCN model performs on the Karate dataset with
L = 2. The blue and orange lines show the proportion of robust nodes identified
by the dual approximation robustness verification algorithm and the NeWise
approximation algorithm, respectively.
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Figure 2(a) compares the number of robust nodes identified by both algo-
rithms before the GCN model undergoes robustness training. The vertical gap
between the two curves shows that the dual approximation algorithm finds
more robust nodes than the NeWise algorithm, with the largest difference being
around 12%. This highlights that the relaxation techniques and bounds on non-
linear activation functions proposed in this paper offer more precise results.

After robustness training is applied to the GCN, the model is re-evaluated
using both algorithms, as shown in Fig. 2(b). The results show a significant
increase in the number of robust nodes, with the dual approximation algorithm
consistently identifying more than the NeWise algorithm, maintaining a 12%
difference at its peak. This confirms the effectiveness of the proposed verification
method for GCN robustness.

Figure 2(c) contrasts the number of robust nodes identified by the dual
approximation algorithm before and after the model’s robustness training. It’s
clear that after training, more robust nodes are identified, reinforcing the effec-
tiveness of the robustness training and the proposed validation method for GCN
robustness.

Fig. 3. L = 3 changes in robust nodes

Figure 3 shows how the GCN performs with L = 3. In this case, fewer robust
nodes are identified compared to the L = 2 scenario. The vertical gap between
the two curves is larger than with L = 2, reaching a maximum of 17%. This
suggests that increasing the number of layers makes the model more fragile, but
the dual approximation algorithm reduces this overestimation.

Table 1 shows that as the perturbation space Q increases, the proportion
of robust nodes decreases, while the proportion of non-robust nodes rises. For
example, with L = 2 and Q = 3, 79.41% of nodes are robust without robustness
training, increasing to 82.35% after training. At Q = 10, only 20.59% of nodes are
robust without training, but this improves to 35.29% after training. This further
demonstrates the effectiveness of robustness training and shows that GCNs are
sensitive to small input changes.

Relative to the L = 2 model, the L = 3 model appears more fragile under
perturbation. For instance, when Q = 20, 20.59% of nodes remain robust in the
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Table 1. Experimental result

L Model Q = 3 Q = 5 Q = 10 Q = 20

Dual NeWise Dual NeWise Dual NeWise Dual NeWise

L = 2Normal 79.41% 76.47% 38.24% 35.29% 20.59% 20.59% 20.59% 20.59%

Robust 82.35% 79.41% 44.12% 41.18% 35.29% 23.53% 32.35% 23.53%

L = 3Normal 38.24% 35.29% 32.35% 14.71% 17.65% 5.88% 5.88% 2.94%

Robust 52.94% 26.47% 41.18% 11.76% 23.53% 8.82% 11.76% 8.82%

L = 2 model, but only 5.88% in the L = 3 model. This highlights how overes-
timations propagate through the model layers and worsen with an increase in
depth, thereby affecting the verification of robust nodes. The dual approximation
algorithm performs better than the NeWise algorithm under the L = 3 model
conditions. For example, when Q = 10 and as layer depth increases, the propor-
tion of robust nodes identified by the dual approximation algorithm drops from
20.59% to 17.65%. In contrast, for the NeWise algorithm, it falls from 17.65%
to 5.88%. The dual approximation algorithm is significantly less affected by the
increase in layer depth than the NeWise algorithm, reflecting its superior ability
to mitigate overestimations.

6 Conclusion

This paper introduced a GCN robustness verification algorithm to counter node
feature adversarial attacks. The issue of robustness within graph neural net-
works is initially defined and subsequently formulated as a linear programming
problem. A dual approximation method is utilized to address the prevalent issue
of overestimation that arises during the convex relaxation of neural networks.
The algorithm verifies the robustness of GCN models independently of partic-
ular attack algorithms, data labeling, or downstream tasks. Experimentation
validates the method’s efficacy, with comparative studies further affirming the
algorithm’s capacity to minimize overestimation, thereby highlighting the sig-
nificance of the proposed GCN robustness verification algorithm. Currently, the
algorithm does not account for robustness under structural perturbations. Future
work will extend to include structural perturbations, aiming to contribute to the
development of a GCN algorithm that ensures robustness against a diverse array
of attacks.
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Abstract. Epicyclic Bevel Gear Trains (EBGTs) play a vital role in pro-
viding highly efficient solutions for power transmissions between shafts in
various engineering applications, such as wind turbines and jet airplane
engines. The kinematic analysis of EBGTs involves identifying funda-
mental cycles, and utilizing screw theory to understand the velocities
and relative motion of the system’s components. In this paper, we pro-
pose to use higher-order-logic theorem proving for the formal kinematic
analysis of EBGTs. In particular, we formalize a directed graph repre-
sentation of EBGT systems, consisting of links and joints (pairs). Next,
we formalize a corresponding cycle matrix form of the EBGT in order to
analyze fundamental cycles in the graph. Moreover, we formalize the lin-
ear and angular velocities of the joint components in the systems using
various notions of screw theory, such as screw and twist. We use the
above to formally verify the kinematic equations providing a sound rela-
tionship between the relative angular joint velocities. In order to illus-
trate the utility of our proposed formalization, we formally analyze the
Bendix wrist, which is a well-known industrial geared mechanism, by
providing a verified solution of its kinematic equations.

Keywords: Epicyclic Gear Trains · Kinematic Analysis · Cycle
Matrix · Screw Theory · Higher-Order Logic · Theorem Proving ·
Isabelle/HOL

1 Introduction

Epicyclic Bevel Gear Trains (EBGTs) [22], known as transmission mechanisms,
are composed of gear pairs that have intersecting axes, and at least one gear axis
is in circular motion with respect to the ground/fixed link of the mechanism.
EBGTs are integrated to a variety of mechanisms for the purpose of transmitting
rotational motion and/or adapting the speed of various components of mecha-
nisms. EBGTs are used in a wide range of engineering and mechanical appli-
cations, such as automotive, avionics, aerospace and renewable energy, thanks
to their advantages like altered speed ratios and higher efficiency of the power
transmission. For instance, EBGTs are of key importance in the design of robotic
wrists for power transmission, which assist in reducing the weight and inertia of
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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a robotic manipulator and thus enhancing the efficiency of the mechanism [18].
Due to their aforementioned abilities and usage in safety-critical applications,
e.g., wind turbines and jet airplane engines, their kinematic analysis becomes
quite significant since the occurrence of any unexpected behavior may result in
financial loss and even fatalities.

To perform a kinematic analysis of an EBGT mechanism, we need to develop
a set of kinematic equations capturing the relative angular velocities1 of various
components of the system, such as joints and links, which are further analyzed by
finding out their solutions providing a relationship between the output and input
velocities. There are several techniques used for the kinematic analysis including
tabular methods [14], train value methods [4] and graph theory methods [20,21].
For instance, one of the commonly used methods in textbooks is the tabular
method based on Willis’ inversion method [24]. However, this method is appli-
cable to non-parallel axis gear trains mechanisms only. Similarly, the train value
method solely focuses on the overall angular velocity ratios, and thus cannot deal
with the velocities of intermediate links. On the other hand, the graph theory
with the fundamental cycle concept [16] is suitable for systems with plenty of
gears and multitude Degree of Freedoms (DOF). Here, the analysis starts with
a synthesis of the kinematic structure of the system using fundamental cycles,
from which a cycle matrix, as an algebraic representation, is used to capture
the relationship between the edges and the cycles. Next, by utilizing the screw
theory [5], the velocity of each joint is represented by screws and twists based
on the fixed frame of each component. Then, the orthogonality conditions are
established using the cycle matrix and screw/twist matrices in order to derive the
kinematic equations. Finally, these equations for the relative angular velocities
of joints are analyzed to conclude the analysis.

Conventionally, EBGTs are analyzed using paper-and-pencil proof and
computer-based simulation techniques. However, the former is prone to human-
error, while the latter frequently relies on unverified numerical algorithms in the
core of the associated tools that can introduce approximation errors, leading to
potential inaccuracies in the results. In consideration of these limitations, con-
ventional methods do not provide the necessary level of accuracy and precision
required for a comprehensive analysis of systems. On the other hand, formal
methods, such as higher-order-logic (HOL) theorem proving, provides a more
rigorous approach by constructing computer-based mathematical modelling of
systems and verifying its properties through logical reasoning. HOL theorem
proving is hence well-suited for the formal modeling and analysis of EBGT mech-
anisms since it provides soundness and a high level of expressiveness.

In this paper, we propose to use the Isabelle/HOL [13] for performing the
kinematic analysis of EBGTs. In particular, we formalize cycle matrix based
directed graph models of EBGT mechanisms using higher-order logic theorem
proving. In general, an EBGT can be modeled using either an undirected graph
with adjacency matrix or a directed graph with cycle matrix. Unlike undirected

1 Relative angular velocity, or rotational velocity, is the difference between the rota-
tional speeds of two links.
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graphs with adjacency matrices, a directed graph based analysis does not require
additional rules to identify graph cycles, which are obtained using a cycle matrix
that is further used to generate the kinematic equations of the system [19]. Fur-
thermore, directed graphs can model symmetric and asymmetric relationships
between components, making them more generic. Therefore, in this paper, we
use a directed-graph based modeling approach to analyze EGBT mechanisms.
Next, we formalize the screw for describing spatial geometry of local frames
assigned to joints, which provides rotational and translational motion of joints.
Similarly, we formalize the twist vector to model angular and linear velocity of
joints. In the next step, we utilize the above formalization alongside the orthog-
onality condition to formalize a set of kinematic equations capturing the relative
angular velocities. To demonstrate the utility of our proposed formalization, we
formally analyze a Bendix wrist mechanism [19] by verifying its kinematics using
Isabelle/HOL. To the best of our knowledge, there exists no formal analysis of
EBGT systems that uses graph-based cycle matrices and screw theory.

The remainder of the paper is organized as follows: Sect. 2 discusses an
overview of the related work regarding the formal kinematic analysis of engi-
neering and physical systems, topology matrices and screw theory. We present
a foundational formalization of EBGTs analysis in Sect. 3. As an application,
in Sect. 4, we develop the formal kinematic analysis of the Bendix wrist mecha-
nism in Isabelle/HOL. Finally, Sect. 5 concludes the paper with pointers to some
future directions.

2 Related Work

Higher-order-logic theorem proving has been used for the formal kinematic anal-
ysis of engineering and physical systems. For instance, Farooq et al. [10] used the
HOL Light theorem prover to formally analyze the kinematics of two-link pla-
nar manipulators. Similarly, Rashid et al. [15] formally analyzed the dynamics
of robotic cell injection systems up to 4-DOF using HOL Light. Chen et al. [7]
also used HOL Light to formalize a camera pose estimation algorithm based
on Rodrigues formula for robotic systems. Moreover, Wang et al. [23] formally
verified the inverse kinematics of a three-fingered dexterous hand by analyzing
the Paden-Kahan-sub-problem based on the screw theory in HOL Light.

On the other hand, Affeldt et al. [1] developed some geometrical founda-
tions in 3-Dimensions (3D), including rotation matrices, screw motion as well
as Denavit-Hartenverg (D-H) convention for forward kinematics of robot manip-
ulators using the Coq theorem prover. Similarly, Wu et al. [25] formalized a
Jacobian matrix to perform the forward kinematic analysis of a 3-DOF planar
robot manipulator in the HOL4 theorem prover. Later, Shi et al. [17] extended
this work by formally verifying the kinematic Jacobian for serial manipulators
using the screw-based methods. In particular, the authors formalized twists to
represent relative motion of a rigid body using exponential mapping. Recently,
Xie et al. [26] used Coq to formalize coordinate transformation for robots, espe-
cially for spiral motion of rigid bodies, using Rodrigues formula and homogeneous
matrices.
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The aforementioned methods, including the screw-based approach, are
focused on formally analyzing serial robotic manipulators, and do not consider
any topological aspects of the systems, which are required for a comprehensive
analysis of EGBTs.

Regarding topological matrices, there exist only a few formalizations in
higher-order-logic theorem provers. For example, Heras et al. [11] formalized inci-
dence matrices for undirected graph-based representations using Coq and used
it to formally analyze 2D digital image processing systems. Recently, Edmonds
et al. [9] formalized incidence matrices in Isabelle/HOL to represent a design in
order to verify the Fisher’s inequality. However, these contributions are able to
only analyze systems represented by undirected graphs. Moreover, they do not
focus on the kinematic analysis of EBGTs mechanisms, which is the scope of the
current paper.

3 Formalization of EBGTs Analysis Foundations

3.1 Formalization of Cycle Matrices

A directed graph is defined by an ordered pair DG = (N,E), where N represents
a set of nodes and E is a set of edges, where each of them is a pair of distinct
nodes. For the case of EBGT mechanisms, in a mechanical digraph (directed
graph) representation, links are represented by nodes and connectors between
the links, called joints/pairs are represented by directed edges. The mechanical
digraph of the mechanisms with cycles can be algebraically represented as a
matrix, called cycle matrix. This matrix captures the relationship between the
cycles and joints of a mechanism represented by a (mechanical) directed graph.
A cycle matrix is mathematically defined as follows [8]:

Definition 1. Cycle Matrix of a Directed Graph
Consider a set of edges {e1, · · · , en} and cycles {L1, · · · , Ll}. C is an l × n

cycle matrix of the directed graph, such that

Ci,j =

⎧
⎨

⎩

1 if ej ∈ Li, and the direction of ej andLi are the same
−1 if ej ∈ Li, and the direction of ej andLi are opposite
0 if ej /∈ Li

Here a cycle of a graph is a closed path, defined as a finite sequence of distinct
edges where the start and the end nodes of the path are the same. It is worth
to note that in this paper, we consider mechanical digraphs EGBTs without
self loops, and having distinct cycles in a cycle-basis2. This concept, known as
fundamental cycles, enables the analysis of the system on any cycle basis, which
is sufficient to understand the kinematics of the entire mechanism. Moreover,
the cycle matrix of the mechanism in this concept holds an important property

2 A cycle basis in a directed graph is defined as the set of independent cycles.
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that the number of gear pairs is the same as the number of cycles in a cycle
basis.

In order to formalize a cycle matrix in Isabelle/HOL, we first formally model a
mechanical digraph utilizing locale modules [6] in Isabelle/HOL. A locale module
provides a series of context elements, needed to structure abstract algebraic
concepts. These elements, namely parameters and assumptions, are declared
using the keywords fixes and assumes, respectively. Locales can be expanded
by adding new parameters, definitions and assumption into existing ones, which
makes them flexible and reusable.

We now introduce a locale mech digraph consisting of a list of nodes (N s)
and a list of edges (Es), as well as the component relationships as well-formed
assumptions3. It is worth mentioning that we chose the parameter types as real
for the purpose of labeling the nodes and thus edges.

locale mech digraph =

fixes nodes list :: nodes (Ns) and edges list :: edges (Es)
assumes mechdg wf: e ∈ set Es=⇒ fst e ∈ set Ns ∧ snd e ∈ set Ns ∧ fst e �= snd e

assumes distincts: distinct Ns distinct Es

where the function set accepts a list of nodes and edges and returns a set.
Similarly, the functions fst and snd accept a pair, and extract its first and
second elements, respectively. The function distinct takes a list and ensures
that elements of the list are disjoint. Furthermore, the assumption mechdg wf
ensures that the digraph has no self-loop. Next, we formalize the system with
cycles by adding cycle parameter and well-formed assumptions on the locale
nempty mechdg by ensuring a valid digraph with a non-empty list of nodes and
edges.

locale cycle system = nempty mechdg +

fixes cycle basis :: edges list (Ls)
assumes wf 1: ls ∈ set Ls=⇒ set ls ⊆ symcl E ∧ length ls ≤ length Es
assumes wf 2: ls ∈ set Ls=⇒ cycle ls ∧ cycle (reverse ls)

and distinct: distinct Ls

where symcl accepts a Cartesian set and guarantees that this set contains ele-
ments with their reversed version. The assumption wf 1 provides a validity of
every cycle by ensuring that every element of the cycle basis Ls is a subset
of the symmetric relation of edges. It also makes sure that the size of the cycle
cannot be larger than the number of edges in a graph. Similarly, wf 2 guarantees
that every element of the cycle list is a cycle and its reverse is also a cycle. The
assumption distinct ensures the non-repetition of cycles in the cycle basis.
Additionally, we formally define a nempty cycle system locale on top of the
cycle system, which ensures that the cycle system has at least one cycle in the
cycle basis.

3 We abbreviate real as node, real list as nodes, real×real as edge, and
(real×real) list as edges for a better readability.
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locale nempty cycle system = cycle system +

assumes cycle basis nempty: Ls �= [ ]

We now describe the relationship between the directions of a cycle and its
corresponding edges. The direction of edges in a cycle is the same as that of
a cycle, called positively oriented cycle, whereas the cycle is said to be nega-
tively oriented with the edge if the edge is in the reversed cycle. For instance, a
positively oriented cycle is formalized as follows:

definition in pos cycle x es ≡ (x,es) ∈ Cp

where Cp is a set of pairs consisting of the edge and the cycle, formalized as:

definition Cp ≡ {(x,es). x ∈ set Es ∧ es ∈ set Ls ∧ x ∈ set es}

Similarly, the formalization of the relation between the edge and the cycle
where the edge is negatively oriented with the cycle is given as:

definition in neg cycle x es ≡ (x,es) ∈ Cn

where Cn is a set of pairs consisting of the edge and the cycle

definition Cn ≡ {(x,es). x ∈ set Es ∧ es ∈ set Ls ∧ x /∈ set es

∧ x ∈ set (reverse es)}

Here, the function reverse takes a pair list and reverses its order by swapping the
elements of each pair in the list. Therefore, we obtain the concept of negatively
oriented cycles using the function reverse. Note that we explicitly indicate the
direction of the cycle while assuming each edge is positively directed. Next, the
cycle matrix is formalized in Isabelle/HOL as follows:

definition cycle matrix :: edges list ⇒ edges ⇒ real mat

where cycle matrix Ls Es ≡ mat (length Ls) (length Es)

(λ(k,j). if (Es!j) ∈ set (Ls!k) then 1 else

if (Es!j) ∈ set (reverse (Ls!k)) then -1 else 0)

3.2 Formalization of Screw Theory Notions

The screw theory provides a unified framework for describing the spatial dis-
placement (screw motion) of a rigid body, encompassing both rotational and
translational components. Similarly, the linear and angular velocities of a rigid
body can be expressed within a single concept using a screw, called twist. A
screw [5] is mathematically defined as a dual vector consisting of two three-
dimensional vectors, where the first vector represents the direction vector of a
line (screw axis) and the second describes the moment vector specifying the
translation along the screw axis. When a screw has zero pitch4, resulting in pure
4 A pitch is a scalar quantity that describes the ratio between the translational and

rotational part of the screw.
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rotation without translation, its six elements become mathematically equivalent
to the Plücker coordinates [12]. In the analysis of EBGTs, a screw is analogous
to Plücker coordinates that can define the spatial geometry of the axis zk of
the locale frames attached to the pair k [20]. The screw u0

c,k is mathematically
expressed as follows:

u0
c,k =

(
u0
k

I0c,k × u0
k

)

(1)

where the subscripts k and c refer to all pairs5 and gear pairs, respectively.
Similarly, the superscript 0 denotes that the components of the vectors in a screw
are measured with respect to the base frame. The first vector in the screw, u0

k,
describes the orientation of the unit vectors of a frame pair k with respect to
the base frame 0. The first vector u0

k can mathematically be derived using a
direction cosines matrix as follows [20]:

u0
k = Θ0,k · u =

⎡

⎣
1 0 0
0 cosϕz0,zk sinϕz0,zk

0 −sinϕz0,zk cosϕz0,zk

⎤

⎦ ·
⎡

⎣
0
0
1

⎤

⎦ (2)

where u is the unit vector along the z-axis. Moreover, Θ0,k is a direction cosines
matrix that describes the instantaneous orientation of the z-axis in the base
frame with respect to the z-axes of all pairs frames, and thus provides their
rotation about the respective axes. In addition, ϕz0,zk presents the angle between
the z-axes of the base and the pair frames and is equally represented by ̂(z0, zk).
By simplifying Eq. (2), we obtain the first vectors of screw for EBGTs as follows:

u0
k =

⎛

⎝
0

sin(ẑ0, zk)
cos(ẑ0, zk)

⎞

⎠ (3)

Similarly, the second vector in Eq. (1), I0c,k × u0
k, called the moment of the

unit vector u0
k, is defined as the cross product of two vectors such that

I0c,k × u0
k = r0c,k =

⎛

⎝
xk − xc

yk − yc
zk − zc

⎞

⎠ × u0
k (4)

Here, I0c,k is a distance vector between the points on the frames k and c. Moreover,
the EBGT mechanism exhibits pure rotation around the x-axis and there is no
translation for the components of the system along the x-axis. This implies that
the vector moment of u0

k is parallel to the x-axis. The generic form of the moment
vector can be obtained by using Eq. (3) in Eq. (4) as follows [19]:

r0c,k =

⎛

⎝
(zc − zk) · sin(ẑ0, zk) + (yk − yc) · cos(ẑ0, zk)

0
0

⎞

⎠ =

⎛

⎝
Pc,k

0
0

⎞

⎠ (5)

5 All pairs of an EBGT mechanism consist of turning and gear pairs.
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We use Pc,k as an abbreviation of the first element of the moment vector. More-
over, it can also be expressed as the function of the pitch diameters of the mech-
anisms, which is further used to represent a coefficient matrix in terms of the
speed ratio of gear pairs as described in Sect. 4 [19]. In general, a pitch diameter
of a gear indicates the diameter of the pitch circle, which is an imaginary circle
that measures the distance between a point on a tooth and its corresponding
point on the adjacent tooth. It is used for the characterization of speed ratio of
a gear train, which refers to the relative speed of rotation between two rotating
components of a gear train. The speed ratio, also known as tooth or gear ratio,
is defined as the pitch diameter of the tail component of a gear pair divided by
the pitch diameter of its head component. It can be defined as ig = dgtail

/dghead

where g = [gtail, ghead].

Now, we formalize a screw vector in Isabelle/HOL as:

definition screw :: real vec ⇒ real vec ⇒ real vec

where screw u r ≡ u @v (r ×j u)

where @v is the operator for appending vectors, and the operator ×j is used for
the cross-product. Note that, r refers to the distance vector in 3D space, which
will be explicitly modeled in Sect. 4. Next, we formalize the rotation system
providing orientation of the unit vectors (Eq. (2)) as follows:

definition mat rot sys :: real mat ⇒ real vec ⇒ real vec ⇒ bool

where mat rot sys Θ u uk ≡ (uk = Θ ∗v u)

where Θ denotes the direction cosines matrix and ∗v is an operator modeling
multiplication between a matrix and a vector. Utilizing this formalization, we
verify the general form of angular velocities of each pair (Eq. (3)) as follows:

lemma fstvec form:

assumes dim: u ∈ unitvecs and unitz: w = vec of list [0, 0, 1]

and rotx sys: rotx (vec first (screw u r) 3) w α

shows u = vec of list [0, sin α, cos α]

Here, assumption dim ensures that u is 3-dimensional unit vector, while unitz
asserts that w is a unit vector of the z-axis. Similarly, rotx sys ensures that the
orientation of u is about the x-axis with an angle α. The function vec first
accepts a vector and the number 3 and becomes a new vector partitioned accord-
ing to its first 3 elements (Eq. (1)). Furthermore, the function vec of list takes
a list and returns it to a vector. Next, we verify the moment vectors for EBGT
systems (Eq. (5)) in Isabelle/HOL as follows:

lemma sndvec form:

assumes dimI: r ∈ points3D and xdist0: r$0 = 0

and dim: u ∈ unitvecs

and unitz: w = vec of list [0, 0, 1]

and rotx sys: rotx (vec first (screw u r) 3) w α

shows vec last (screw u r) 3 = vec of list [-(r$2)*sin θ+(r$1)*cos θ, 0, 0]
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Here, points3D is a set of 3 dimensional vectors and xdist0 ensures that there
is no translation on the x-axis. vec last is a function that takes a vector v and
a number n, and returns a partitioned vector based on the last n elements of
the vector v. The verification of the above lemma is based on the fstvec form
lemma, alongside some reasoning on vectors, lists and sets. Next, we verify the
orthogonality relationship between these vectors as follows:

lemma rel fs orth:

assumes dim: u ∈ unitvecs and dimI: r ∈ points3D

shows vec first (screw u r) 3) • vec last (screw u r) 3) = 0

The verification of the above lemma is based on the already verified lemmas,
such as fstvec form and sndvec form, along with some simplifications on dot
product and dimension of the screw vector. Next, the relative angular and linear
velocity are defined in a compact form (block/dual vector), called twist s0c,k as
follows:

s0c,k = u0
c,k · q̇k =

(
q̇0
k

I0c,k × q̇0
k

)

(6)

where q̇k is a scalar velocity variable of a pair (e.g., turning or gear pair) in
the mechanism, called twist intensity. The twist intensities assigned to each pair
describe the scalar magnitude of the motion between one component of the pair
and the other. Similarly, the 3-dimensional vector q̇0

k represents the pairs’ relative
velocities that are also equal the difference between angular velocity of the pair’s
component (links). Now, we formalize a twist (Eq. (6)) in Isabelle/HOL as:

definition twist:: real ⇒ real vec ⇒ real vec ⇒ real vec

where twist q u r ≡ q ·v (screw u r)

where ·v is an operator providing multiplication of a scalar and a vector. Similar
to the screw, the orthogonality relation between the first and second vector in
the twist shall be satisfied, which we verify in Isabelle/HOL as follows:

lemma twist fs orth:

assumes dim: u ∈ unitvecs and dimI: r ∈ points3D

shows vec first (twist q u r) 3) • vec last (twist q u r) 3) = 0

This lemma is verified using the relationship between screw and twist as well as
simplifications on cross and dot product.

3.3 Orthogonality Condition for Kinematic Equations

In order to develop the kinematic equations of an EBGT system, we define the
following two orthogonality conditions for angular and linear velocities of pairs,
respectively.

[C ◦ û0
k] · q̇0

k = 0c (7)
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[C ◦ r̂0c,k] · q̇0
k = 0c (8)

Here, we use the symbol ̂ to represent a matrix whose elements are vectors.
Similarly, ◦ represents the Hadamard product, which is used for element-wise
multiplication between matrices of the same sizes. û0

k is a matrix whose elements
are unit vectors assigned to each pair of the system, and the matrix has the
same dimension as a fundamental cycle matrix C. Moreover, r̂0c,k denotes a c×k
matrix whose entries are moment vectors, and 0c is a c-dimensional vector with
zero vector entries. Note that we drop the superscript 0 from the elements of
aforementioned matrices for better readability. Since Eqs. (7) and (8) describe
the relative velocities and moments of unit vectors, the following conditions are
satisfied for every cycle in the cycle basis:

– The sum of twist intensities q̇k = 0,
– The sum of twists’ moments with respect to gear pairs is 0.

Utilizing the above equations, the kinematic equations for the relative veloci-
ties of joints can be developed for a given system. For instance, the first condition
above provides to obtain twists of gear pairs in terms of twist of turning pairs.
Similarly, the solutions of the kinematic equations can be derived in a closed-
form by solving the equations for the total number of DOF in terms of speed
ratios as given in Sect. 4.

The formalization of the orthogonality conditions requires the notion of the
Hadamard product, which is formalized in Isabelle/HOL as follows:

definition hadamard prod :: ′a :: semiring 0 mat ⇒ ′a vmat ⇒ ′a vmat

where hadamard prod A B = (let ra = dim row A; ca = dim col A in

if ra = dim row B ∧ ca = dim col B

then (mat (ra) (ca) (λ(i, j). A $$ (i,j) ·v B $$ (i,j)))

else undefined)

where dim row and dim col are functions that accept a matrix and return the
number of rows and columns in the matrix, respectively. Moreover, ′a vmat and
′a vvec are the abbreviations for the type synonyms of ′a vec mat and ′a vec
vec, respectively. Next, we formalize a new operator over reals that provides the
multiplication between a matrix (where its components are vectors) and a vector
with scalar entries and returns a vector with elements are vectors.

definition mult vmat vec :: real vmat ⇒ nat ⇒ real vec ⇒ real vvec

where mult vmat vec A n v ≡ vec (dim row A) (λi. (vec n (λk.

Σ j < dim col A. (v $ j) * A $$ (i,j) $ k)))

Here, n denotes the size of the vectors in the matrix A. Next, we formalize an
m-dimensional vector whose elements are n-dimensional zero vectors, denoted
by 0vv, as:

definition zero vvec :: nat ⇒ nat ⇒ ′a zero vvec ("0vv")

where 0vv m n ≡ vec m (λi. 0v n)
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where 0v n describes a n-dimensional zero vector. Using preceding definitions,
we now formalize the generic form of the orthogonality condition, which is used
to develop Eqs. (7) and (8) for the Bendix wrist mechanism (Sect. 4), as follows:

definition orth cond imp

where orth cond imp A n v ≡ mult vmat vec A n v = 0vv (dim row A) n

4 Formal Analysis of the Bendix Wrist Mechanism

In this section, we formally analyze a Bendix wrist mechanism (BWM) [19] based
on the formalization that we developed in Sect. 3. A BWM is a 3-DOF rotational
mechanism which consists of 6 moving links and 6 turning pairs (revolute pairs)
and 3 gear pairs as depicted in Fig. 1.

Fig. 1. Bendix Wrist Mechanism [20]

The numbering of the links starts with “0”, which is assigned to the base (or
forearm). The mobile links are labeled as {1, 2, 3, 4, 5, 6}, which are the geared
wheels and carriers. The number of all pairs in the mechanism is equal to the
number of turning pairs labeled {E0, E1, E2, E3, E4, E5} and the number of
gear pairs6 labeled {E6, E7, E8}. Each pair in the mechanism is attached with
the unit vectors to describe the direction of motion. For the above BWM, the
unit vectors of turning pairs are considered as

u0 = u1 = u2 = u5 =

⎛

⎝
0
0
1

⎞

⎠ and u3 = u4 =

⎛

⎝
0
1
0

⎞

⎠ (9)

In Fig. 2, we present a directed graph of the system with nodes are labeled
as mobile links, and edges labeled as pairs. The cycle basis of the system is

6 The number of gear pairs is also the number of DOF.
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{C1,C2,C3}. Each edge is represented by a pair of nodes, e.g., E6 = (5, 6) and
E8 = (4, 6). Three independent cycles in the system are given as:

C1 = [E6,−E3,−E0, E1]
C2 = [E7, E4,−E3,−E0, E2]
C3 = [E8,−E5,−E4]

Here, the negative sign represents the opposite direction between a cycle and an
edge in the cycle, e.g., −E5 is in cycle C3 but their orientations do not coincide.
Furthermore, the number of independent cycles is established to be equal to the
number of gear pairs in the mechanism.

Fig. 2. Directed Graph of BWM and its Corresponding Cycle Matrix

We begin by formally parameterizing the graph components, i.e., nodes,
edges, and cycles, which will make the rest of the formalizations easier.

definition cyc sys bwm where
cyc sys bwm ≡ Ns = [0,1,2,3,4,5,6] ∧

Es = [(0,1),(0,2),(0,3),(1,5),(4,5),(5,6),(2,5),(3,4),(4,6)] ∧
Ls = [[(2,5),(5,1),(1,0),(0,2)],[(3,4),(4,5),(5,1),(1,0),(0,3)],

[(4,6),(6,5),(5,4)]]

Here, nodes and edges are denoted as N s and Es, and the cycle basis is rep-
resented by Ls. Note that all formalizations related to cycles are done under
the locale nempty cycle system (presented in Sect. 3.1) in order to facilitate
the usage of already developed system properties, such as the dimensional and
index. We then verify the cycle matrix of BWM (given in Fig. 2b) as follows:

lemma cycle matrix bwm:

assumes cyc sys bwm

shows cycle matrix Ls Es = mat of rows list 9 [[-1,1,0,-1,0,0,1,0,0],

[-1,0,1,-1,1,0,0,1,0],

[0,0,0,0,-1,-1,0,0,1]]
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where mat of rows list accepts a number indicating the column size of the
matrix and a list, which its elements are lists that express each row of the matrix.
The verification of the above lemma involves the cycle matrix definition and
its properties such as row/column and index properties, negative and positive
cycle relationship and reasoning on sets and lists. Next, the first orthogonality
condition (Eq. (7)) for BWM is mathematically expressed as:

⎡

⎣
−u0 u1 0 −u3 0 0 u6 0 0
u0 0 u2 −u3 u4 0 0 u7 0
0 0 0 0 −u4 −u5 0 0 u8

⎤

⎦

︸ ︷︷ ︸

C ◦ û0
k

· q̇ =

⎛

⎝
0
0
0

⎞

⎠ (10)

where q̇ = (q̇0, q̇1, q̇2, q̇3, q̇4, q̇5, q̇6, q̇7, q̇8)T 7. Moreover, the characters written in
bold represent vectors. To model Eq. (10) for the case of the BWM, we first
formalize the û0

k matrix in Isabelle/HOL as:

definition unitvecs mat :: real vec list ⇒ real vmat

where unitvecs mat U ≡
(let units = [U!0, U!1, U!2, U!3, U!4, U!5, U!6, U!7, U!8]

in mat of rows list 9 [units, units, units]

Now, we formalize the first orthogonality condition (Eq. (7)) as:

definition fst orth cond :: real vec list ⇒ real vec ⇒ bool

where fst orth cond U q ≡
orth cond imp (hadamard prod C (unitvecs mat U)) 3 q

where C indicates the cycle matrix. The following lemma verifies the Hadamard
product of C and unitvecs mat utilizing the definitions of the Hadamard prod-
uct, the matrices as well as their dimensions and index properties.

lemma had mat fst bwm:

assumes cyc sys bwm and units bwm U u6 u7 u8

shows hadamard prod C (unitvecs mat U) = had mat fst U

Here, the predicate units bwm represents Eq. (9) along with the unknown vectors
assigned to gear pairs, i.e., u6, u7, and u8, which are 3-dimensional unit vectors.
Furthermore, we define had mat fst that takes unit vectors U, and returns the
explicit form of the matrix C ◦ û0

k, depicted in Eq. (10). The first orthogonality
condition is used to derive the following set of equations in matrix form, which
describes the relationship between the gear pairs and the turning pairs twists.

⎛

⎝
q̇6

q̇7

q̇8

⎞

⎠ = −
⎡

⎣
−1 · u0 1 · u1 0 −1 · u3 0 0
−1 · u0 0 1 · u2 −1 · u3 1 · u4 0

0 0 0 0 −1 · u4 −1 · u5

⎤

⎦ ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

q̇0
q̇1
q̇2
q̇3
q̇4
q̇5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(11)

7 The superscript “0” is removed from the vectors for better readability.
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Here, q̇6, q̇7, q̇8 are the first vectors in the twists (relative angular velocity
vectors) related to the gear pairs such that q̇6 = q̇6 · u6, q̇7 = q̇7 · u7 and
q̇8 = q̇8 · u8. This relationship is verified in the following lemma.

lemma rel gear turning pairs:

assumes sys: cyc sys bwm and units: units bwm U u6 u7 u8

assumes twd: dim vec q = 9

shows fst orth cond U q =⇒ fst results eqs U q

where fst results eqs is formally modeling the set of equations for the rela-
tionship between the gear twists and the turning pair twists, described in a com-
pact form in Eq. (11). The verification of the lemma utilizes the verified lemmas
had mat fst bwm and fst orth eqs8 alongside the definition of mult vmat vec
with reasoning on dimension and index.

Next, the second orthogonality condition (Eq. (8)) for BWM mechanisms can
be mathematically expressed as

⎡

⎣
−r0,0 r0,1 0 −r0,3 0 0 r0,6 0 0
−r1,0 0 r1,2 −r1,3 r1,4 0 0 r1,7 0

0 0 0 0 −r2,4 −r2,5 0 0 r2,8

⎤

⎦

︸ ︷︷ ︸

C ◦ r̂0c,k

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q̇0
q̇1
q̇2
q̇3
q̇4
q̇5
q̇6
q̇7
q̇8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎝
0
0
0

⎞

⎠ (12)

where rc,k9 are entries of the matrix r̂0c,k. To formally verify the second orthogo-
nality condition, we need to formalize a few notions, such as the moment matrix
and the distance vector. For instance, the moment matrix, r̂0c,k, is formalized as:

definition moment mat

where moment mat U G T ≡
mat (length G) (length U) (λ(i,j). snd vecs U G T i j)

Here, the function moment mat accepts three real vector lists and returns them
in the form of a matrix. Each element of the matrix is obtained through the
function snd vecs that maps each index of the moment (second) vector of the
screw in the matrix. Similarly, the distance vector (Eq. (4)) is formalized as:

fun dist vec where dist vec T G i j = (T@G)!j - (G!i)

where dist vec is a function that accepts two vector lists as 3-dimensional points
in R and returns them into a difference vector. Next, we verify the relationship
between the screw and the moment vector of the screw as follows:
8 This lemma and more details about the proof can be found in our Isabelle/HOL

script [2].
9 For better readability, we remove the superscript “0” from the elements of r̂0c,k.
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lemma tw sndvecs bwm:

assume units bwm U u6 u7 u8

shows ∧i j. i < length G =⇒ j < length U =⇒
vec last (screw (U!j) (dist vec T G i j)) 3 = snd vecs U T G i j

where i and j denote the indices of the lists G and U, respectively. Based on
Eq. (4), the distance vector Ic,k = 0 when the pair is the gear pair. For the
BWM, this equality holds for the gear pairs in the system such that r0,6 =
r1,7 = r2,8 = 0. In the sequel, we verify these equations, which are further used
to generate kinematic equations.

lemma tw resultants bwm:

assume points param T G and units bwm U u6 u7 u8

shows "snd vecs U G T 0 6 = 0v 3" "snd vecs U G T 1 7 = 0v 3"

"snd vecs U G T 2 8 = 0v 3"

Here, points param ensures that the elements of the turning pair list T and the
gear pair list G are 3-dimensional points represented as vectors, and the size of
these lists are 6 and 3, respectively. The verification of above lemma is based
on the lemma tw sndvecs bwm, definitions snd vecs, dist vec, and screw, as
well as reasoning on cross product, lists and sets. Next, we formalize the second
orthogonality condition (Eq. (8)) as follows:

definition snd orth cond

where snd orth cond U G T q ≡
orth cond imp (hadamard prod C (moment mat U G T)) 3 q

Since the moment matrix entries rc,k are functions of Pc,k (see Eq. (5)), we
can derive a set of equations using the second orthogonality condition as the
following matrix form [19]:

⎡

⎣
−1 · P0,0 1 · P0,1 0 −1 · P0,3 0 0
−1 · P1,0 0 1 · P1,2 −1 · P1,3 1 · P1,4 0

0 0 0 0 −1 · P2,4 −1 · P2,5

⎤

⎦ ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

q̇0
q̇1
q̇2
q̇3
q̇4
q̇5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎝
0
0
0

⎞

⎠ (13)

Next, we verify the relation between Eqs. (12) and (13) as follows:

lemma snd eqs ver:

assumes cyc sys bwm and units bwm U u6 u7 u8 and points param T G

assumes dim vec q = 9

shows snd orth cond U G T q =⇒ snd part kin eqs U G T q

Here, snd part kin eqs represents the equations obtained from Eq. (13). The
proof of the above lemma is similar to the verification of the lemma rel gear
turning pairs. Next, we represent the set of equations (Eq. (13)) in terms of
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speed ratios by using the values of scalar Pc,k’s, which is the first entry of the
moment vector of the screw, along each cycle. These values can be given as
follows [19]:

Cycle C1 −→ P0,0 = −0.5 · d2, P0,1 = −0.5 · d2, P0,3 = −0.5 · d5

Cycle C2 −→ P1,0 = P1,2 = −0.5 · d3, P1,3 = P1,4 = −0.5 · d4

Cycle C3 −→ P2,4 = 0.5 · d4, P2,5 = −0.5 · d6

(14)

where d2, d3, d4, d5 and d6 represent the pitch diameters, which are labeled the
same way as the moving links. Moreover, the speed ratios with respect to each
gear (labeled E6, E7 and E8) can be defined using the pitch diameters as:

Gear 0 −→ E6 = (2, 5) −→ i0 = d2/d5

Gear 1 −→ E7 = (3, 4) −→ i1 = d3/d4

Gear 2 −→ E8 = (4, 6) −→ i2 = d4/d6

Establishing the speed ratios in Eq. (13) using the Eq. (14) as well as some
algebraic manipulations, Eq. (13) can be rewritten as:

⎡

⎣
−i0 i0 0 −1 0 0
−i1 0 i1 −1 1 0
0 0 0 0 i2 −1

⎤

⎦ ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

q̇0
q̇1
q̇2
q̇3
q̇4
q̇5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎝
0
0
0

⎞

⎠ (15)

Next, we utilize Eq. (15) to find the solution for relative velocities, which is
provided in the following vector form:

⎛

⎝
q̇3
q̇4
q̇5

⎞

⎠ =

⎛

⎝
−i0 · q̇0 + i0 · q̇1

(−i0 + i1) · q̇0 + i0 · q̇1 − i1 · q̇2
(i2 · i1 − i2 · i0) · q̇0 + i2 · (i0 · q̇1 − i1 · q̇2)

⎞

⎠

The last step is to formally verify the correctness of the above solution
of kinematic equations derived from the second orthogonality condition in
Isabelle/HOL as:

theorem sol vel snd kin:

assumes pitch diams d2 d3 d4 d5 d6 T G U q

and d4 �= 0 d5 �= 0 d6 �= 0 and dim vec q = 9

shows rel vel sol U G T q =⇒ snd part kin eqs U G T q

Here, pitch diams refers to the Pc,k coefficients (Eq. (14)). The proof process
of the above theorem is similar to that of verifying the relative velocities of gear
pairs using the first orthogonality condition.

To the best our knowledge, this is the first formal kinematic analysis of
epicyclic bevel gear trains based on both topological matrices and screw theory
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in higher-order-logic theorem proving. One of the primary distinctions of our
proposed approach for formally analyzing EBGTs is its generic nature. All lem-
mas are verified for universally quantified variables and functions, allowing for
the formal analysis of any EBGT system without the need for individual system
modeling, as compared to computer-based simulation methods. For example,
the Hadamard product is modeled for generic variables, and specialized for the
BWM mechanism (cf. Sect. 4) to verify the lemma had mat fst bwm. Similarly,
all lemmas are verified for an arbitrary number of components of the EBGTs,
which enables the analysis of large and complex systems. For example, we have
formalized the cycle graph model for EBGTs systems with any number of links
and pairs. Moreover, our work relied on the mathematical analysis provided in
the literature, some of which were often ambiguous or lacking in rigorous details,
posing significant challenges during the formalization process. However, the use
of the Isabelle/HOL theorem prover ensured that every assumption or fact that
may have been overlooked in a paper-and-pencil proof, is explicitly provided.
The initial focus of our formalization efforts was on providing a generic directed
graph model associated with cycle matrices, and combining it with screw theory.
To broaden the applicability of the formalization to a variety of scenarios in the
modeling and analysis of EBGT systems, we established the locale cycle system
based on lists. Moreover, using locale allows flexibility to expand the formaliza-
tion for potential future analysis and applications. The Isabelle/HOL code for
formalization and verification efforts presented in this paper are available at [2].

5 Conclusion

In this work, we proposed to use higher-order-logic theorem proving for the
formal kinematic analysis of epicyclic bevel gear train (EBGT) mechanisms.
These systems can be analyzed using directed graphs, associated topological
matrices, and screw theory concepts. Therefore, we first formally modeled a
directed graph including cycle aspects using the locale modules of Isabelle/HOL.
We then formalized cycle matrices since these can fully characterize topological
properties of the mechanisms, which ease the development and manipulation
of kinematic equation in a compact form. We also formally modeled the screw
and twist for the relative motion of joints of the mechanisms and used them
alongside the cycle matrix to formalize the orthogonality conditions. Finally, we
illustrated the effectiveness of our proposed formalization by formally analyzing
a Bendix wrist mechanism (BWM), where we formally verified the correctness
of the solution of the kinematic equations. As a future work, we plan to extend
our analysis through the use of singularity analysis, which enables the detection
of changes in the kinematics of the systems [3]. Another future direction would
be to explore dynamical aspects of geared mechanisms in order to perform the
formal dynamic analysis of more complex physical and engineering systems.
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Abstract. Hybrid games are games played on a finite graph endowed
with real variables which may model behaviors of discrete controllers of
continuous systems. The synthesis problem for hybrid games is decidable
for classical objectives (like LTL formulas) when the games are initial-
ized singular, meaning that the slopes of the continuous variables are
piecewise constant and variables are reset whenever their slope changes.
The known proof adapts the region construction from timed games.

In this paper we show that initialized singular games can be reduced,
via a sequence of alternating bisimulations, to timed games, generalizing
the known reductions by bisimulation from initialized singular automata
to timed automata. Alternating bisimulation is the generalization of
bisimulation to games, accommodating a strategy translation lemma by
which, when two games are bisimilar and carry the same observations,
each strategy in one of the games can be translated to a strategy in the
second game such that all the outcomes of the second strategy satisfies
the same property that are satisfied by the first strategy. The advantage
of the proposed approach is that one may then use realizability tools for
timed games to synthesize a winning strategy for a given objective, and
then use the strategy translation lemma to obtain a winning strategy in
the hybrid game for the same objective.

Keywords: Controller synthesis · Alternating bisimulation · Hybrid
games

1 Introduction

In order to describe cyber-physical systems in which discrete and continuous
physical processes interact with each other, many mathematical modelling tech-
niques have evolved as a tool. The most common model known so far is the one
of hybrid automata [7].

Controller Synthesis and Game Theory. A reactive system interacts with its
environment, when this system displays time-sensitive behaviors, it is described
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by hybrid games [8]. In practice, some behaviors depend on external factors like
weather or temperature. These behaviors are by definition uncontrollable, hence
for the system behaves as desired, one needs to find ways to limit the effect of
these behaviors. We model this situation through the game theoretic metaphor.
We suppose a game played between two players; the first player Pl1 models the
system and is supposed to be controllable, and the second player Pl2 models the
environment and is supposed to be antagonistic.

The specification to ensure is modeled as an objective (i.e., a subset of the
possible executions of the system) that Pl1 has to enforce against any behavior
of Pl2. This behavior is formalized by the notion of a strategy. Therefore, the
control policy that we aim to implement is any strategy that ensures the desired
specification.

The control problem for hybrid games consists in answering the question of
whether there exists a strategy of the controller that ensures a given specifica-
tion. This problem is undecidable for hybrid games, but decidable for initialized
singular games [8], which are games in which the first derivative of each con-
tinuous variable is piecewise constant, and whenever this derivative changes,
the variable must be reset to some rational value. In this paper we investigate
the existence of decidable sub-classes for this problem. The original proof from
[8] shows that the region construction for timed automata [1] can be adapted
for initialized singular games. Implementing this result requires translating the
whole machinery for deciding timed games to the case of initialized singular
games, namely the notion of zones which generalize regions, and the controlled
predecessor operators on zones. In this article, we show that initialized singular
games can be reduced to timed games [6]. Such a reduction would allow a more
direct application of existing tools for solving timed games like UppAal TIGA
[3]. The reduction is obtained using the notion of alternating simulation, which,
roughly speaking, is a simulation relation that preserves winning strategies, ini-
tially defined for discrete game structures [2] and adapted to concurrent hybrid
games in [9].

Contribution. Inspired by the results of [9] over rectangular hybrid automata,
we build, from each initialized singular game, a timed game which is alternating
bisimilar with the original game. By generalizing [9], the construction passes
through intermediate steps in which the original hybrid game is transformed into
a stopwatch game, then into an updatable timed game, and finally into a timed
game. We also show that each construction comes in pair with an alternating
bisimulation proving that the resulting game is bisimilar with the previous one.
We note that, in some cases, the bisimulation is not a bijection.

Organization. We start by giving the necessary notions and proper definitions
concerning hybrid games and turn based games. We then proceed to the con-
struction of a timed turn based game from a given initialized singular turn based
game with a bisimulation relation between the two games. This construction is
achieved, as mentioned above, through three successive transformations, where in
the intermediary steps we build stopwatch games, resp. updatable timed games.
Each transformation is accompanied by a relation between the sets of configu-
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rations of the two games, which is shown to satisfy the properties of alternating
bisimulations. We end with a short section with conclusions and future work.

Due to page limit, the missing material is available in the full version [5].

2 Turn-Based Hybrid Games

Given a set of variables X, the set of simple compact constraints over X is defined
by the following grammar:

ϕ := x ∈ I | ϕ ∧ ϕ

where I is a compact interval with rational bounds and x is a variable in X. For
a constraint ϕ which contains the conjunct x ∈ [a, b], ϕ(x) denotes the interval
[a, b]. We consider that each constraint contains a single conjunct of the form
x ∈ I for each variable x.

We extend the framework of Initialized Singular Automata from [9] to the
game setting. Informally, an initialized singular game is played between two play-
ers, called Pl1 and Pl2. The set of locations is partitioned into two disjoint sets,
the first one is controlled by Pl1, and the second by Pl2. A play is obtained by the
following interaction, the players take turns by proposing moves as follows: when
a player is in a location that they control. This player proposes an action and a
timed delay, hence a new configuration is obtained. The game proceeds from this
fresh configuration. By repeating this interaction forever, the two players pro-
duce an infinite run for which one of the player wants to satisfy some property
(usually called the objective of the game).

Definition 1 (Initialized Singular Game). An initialized singular game
(ISR game for short) denoted GS of dimension n between two players Pl1 and
Pl2 is a tuple GS = (L1, L2, l0,X,Act,Obs, flow,E, lbl) such that:

– L1 is the finite set of locations that belong to Pl1 and L2 is the finite set of
locations belonging to Pl2, with L1 ∩ L2 = ∅.

– l0 ∈ L1 is the initial location, assumed to belong to Pl1.
– X is a set of n real variables.
– Act is a finite set of actions.
– Obs is a finite set of observations.
– lbl : (L1 ∪ L2) → Obs is the labeling function that labels each location with an

observation.
– flow : (L1 ∪ L2) × X → Q is the value of the derivative which constrains the

evolution of each variable in each location.
– E ⊆ (L1 ∪ L2)×Act×Cnstr(X)× rst(X)× (L1 ∪ L2) where Cnstr(X) is the set

of all simple compact constraints over X and rst(X) : X → Q ∪ {⊥} is the set
of functions that we call reset function. We will denote an edge e ∈ E as a
tuple e = (l, a, ϕe, rste, l

′) such that:
• ϕe ∈ Cnstr(X), in order to take the edge e the value of the variables X

must satisfy the constraint ϕe.
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• rste is a reset function of the variables when the edge e is taken, rste :
X → Q∪ {⊥}, rste(x) ∈ Q means that x is reset to a new value and when
rste(x) = ⊥ it means that x is not reset for any x ∈ X. By abuse of
notation, for a variable valuation v : X → R, we also denote rste(v) the
valuation defined by

rste(v)(x) =

{
v(x) when rste(x) = ⊥
rste(x) otherwise

• when flow(l, x) 
= flow(l′, x) then rste(x) 
= ⊥. In other words, whenever a
variable x ∈ X changes its dynamics then its value is reset to rste(x).

The semantics of an ISR game is defined as a transition system

T (GS) = (Q(GS),Mvs(GS), q0, δS)

where Q(GS) is the set of configurations, i.e., all the couples (l, v) ∈ (L1∪L2)×Rn

with q0 = (l0,0), Mvs(GS) = Act × R+ is the set of moves, and δS consists of

transitions of the form (l, v)
(a,t)−−−→ (l′, v′) for which there exists an edge e =

(l, a, ϕe, rste, l
′) such that, for each variable x ∈ X:

– v(x) + t · flow(l, x) ∈ ϕe(x). We will also use the vectorial notation v′ =
v + t · flow(t, ·) where flow(l, ·) denotes the vector of variable flows.

– v′(x) = rste(x) whenever rste(x) 
= ⊥.
– v′(x) = v(x) + t · flow(l, x) whenever rste(x) = ⊥.

We denote Q1 the set of configurations whose location belongs to Pl1, i.e.
Q1(GS) = {(l, v) ∈ Q(GS) | l ∈ L1} and, similarly, Q2(GS) = {(l, v) ∈ Q(GS) |
l ∈ L2}. We extend the function lbl over the set of all the configurations Q1 ∪Q2

as expected. A run ρ in an ISR game is a finite or infinite alternating sequence

of configurations and moves, ρ = q0
(a1,t1)−−−−→ q1

(a2,t2)−−−−→ q2 . . .. The set of runs in
T (GS) is denoted Runs(GS). A history in T (GS) is any prefix of a run in Runs(GS),
we denote by Histi(GS) the set of histories ending in a configuration of Pli. A
trace is a finite or infinite sequence of observations, and the trace induced by a
run ρ is simply tr(ρ) = lbl(q0) · lbl(q1) · lbl(q2) . . .

Definition 2 (Strategy on T (GS)). Let i = 1, 2. A strategy σi of Pli is a
function that maps finite sequences of configurations ending in a configuration
of Pli to a move (an action and a time delay).

Given two strategies σ1 and σ2, their outcome r = q0
m1−−→ q1

m2−−→ . . . ∈ Runs(GS)
is obtained as follows:

q1 = δS(q0, σ1(q0)) and m1 = σ1(q0)

qi+1 =

{
δS(qi, σ1(q0 . . . qi)) if qi ∈ Q1(GS) and mi = σ1(q0 . . . qi)
δS(qi, σ2(q0 . . . qi)) if qi ∈ Q2(GS) and mi = σ2(q0 . . . qi)
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We denote Out(σ1) the set of all runs that are induced by the strategy σ1 of Pl1
and some strategy of Pl2.

The study of games involves the construction of strategies whose set of out-
comes satisfies some desired property.

Semantically, a property is a subset of the set of infinite traces. We then say
that a strategy σ1 for Pl1 satisfies a property P if the set of infinite traces which
correspond to outcomes of σ1 is included in P .

It is known that the problem of synthesizing strategies for properties defined
by Linear Temporal Logic formulas is decidable for the case of initialized singular
games, as proved in [8] (Theorem 3.1) where an adaptation of the region con-
struction is used. In the rest of the paper, we focus on an alternative approach,
namely reducing the synthesis problem for ISR-games to the synthesis prob-
lem for timed games by means of successive alternating bisimulation reductions.
We start by recalling the notion of alternating bisimulation from [8].

2.1 Alternating Simulation for Turn-Based Hybrid Games

In this section we adapt the notion of alternating simulation for the case of (turn-
based) ISR-games and a semantic version of the strategy translation property
from [2,8].

Definition 3 (Alternating Simulation on Initialized Compact singular
Game). Let G1

S and G2
S be two initialized singular games with the same set

of observations Obs, and let T (G1
S) = (Q(G1

S),Mvs(G1
S), q

1
0 , δ

1
S) and T (G2

S) =
(Q(G2

S),Mvs(G2
S), q

2
0 , δ

2
S) be respectively the induced transition systems.

Let R ⊆ (Q1(G1
S) × Q1(G2

S)) ∪ (Q2(G1
S) × Q2(G2

S)) be a binary relation. The
relation R is called a simulation if, for any two configurations p = (l, v) ∈
Q(G1

S) and q = (s, y) ∈ Q(G2
S), if (p, q) ∈ R then:

1. lbl1(p) = lbl2(q)
2. If p ∈ Q1(G1

S) and q ∈ Q1(G2
S), then for all (m, t) ∈ Mvs(G1

S) with p′ =
(l′, v′) = δ1S((l, v), (m, t)) there exists (m′, t′) ∈ Mvs(G2

S) and q′ = (s′, y′) =
δ2S((s, y), (m

′, t′)) such that (p′, q′) ∈ R.
3. If p ∈ Q2(G1

S) and q ∈ Q2(G2
S), then for all (m′, t′) ∈ Mvs(G2

S) and q′ =
(s′, y′) = δ2S(q, (m

′, t′)) there exists (m, t) ∈ Mvs(G1
S) and p′ = (l′, v′) =

δ1S(p, (m, t)) such that (p,′ q′) ∈ R.

We say that T (G2
S) simulates T (G1

S) and we denote T (G1
S) �s T (G2

S) if there
exists a simulation relation R ⊆ (Q1(G1

S)× Q1(G2
S)) ∪ (Q2(G1

S)× Q2(G2
S)) which

satisfies all of the above conditions and contains the pair of initial configurations,
i.e. (q10 , q20) ∈ R. By extension we also denote sometimes G1

S �s G2
S

Moreover, T (G1
S) and T (G2

S) are bisimilar if there exists simulation relation
R witnessing T (G1

S) �s T (G2
S) and such that R−1 witnesses T (G2

S) �s T (G1
S).

Lemma 1 (Simulation Composition). Let G1, G2 and G3 be three turn based
game structures and their respective semantics T (G1), T (G2), T (G3). Assume that
α is a simulation between T (G1) and T (G2), β a simulation between T (G2) and
T (G3) hence γ = α ◦ β is a simulation between T (G1) and T (G3).
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The proof of the above lemma is straightforward and is left as a simple
exercice.

Lemma 2. If T (G1
S) �s T (G2

S) then for all σ1 strategy of Pl1 in T (G1
S), there

exists σ′
1 a strategy of Pl1 in T (G2

S) such that

{tr(ρ′) | ρ′ ∈ Out(σ′
1)} ⊆ {tr(ρ) | ρ ∈ Out(σ1)}

The relevance of this lemma is the following: if we may prove that a game G is
bisimilar with a simpler game G′ and are able to build a strategy σ′ for Pl1in
G′ which satisfies some property, then Lemma 2 allows us to translate σ′ into a
strategy σ which satisfies the same property. Therefore, if G′ lies in a decidable
class of games Γ , we may use the decision algorithm for Γ to synthesize σ′ and,
hence, provide a methodology for attacking the strategy synthesis problem in
the class of games where G lies.

The plan for the rest of the paper is then to show that ISR games are alter-
nating bisimilar with simpler games in which the strategy synthesis problem is
decidable.

3 From Initialized Singular Games to Stopwatch Game

We extend the construction from [9] used for automata to the more general
case of turn-based games. The first step is to reduce, through an alternating
bisimulation, each initialized singular game to a stopwatch game.

Definition 4 (Initialized Stopwatch Game). An initialized stopwatch game
of n-dimension is an initialized singular game in which the flow is either 1 or 0,
that is, for any location l and variable x, flow(l, x) ∈ {0, 1}.

3.1 Transformation

Given an initialized singular game GS = (l0, L1, L2,X,Act,Obs, flow,E, lbl) we
construct from GS an initialized stopwatch game GW , where we change the
dynamic to flow(l, x) = 1 when it is not zero, for that we adapt the constraints
and the reset functions; we divide the constraints values with the flow of the
current location and the reset values with the flow of the successor location. The
game is built as follows:

GW = (l0, L1, L2,X,Act,Obs, flowW ,EW , lbl)

1. l0, L1, L2, Act, Obs and lbl are kept the same as GS .
2. flowW : L × X → Qn where for all x ∈ X,

flowW (l, x) =

{
0 if flow(l, x) = 0 ,

1 otherwise .
(1)

3. EW is the set of edges eW = (l, a, ϕeW
, rsteW

, l′) such that



Deciding the Synthesis Problem for Hybrid Games Through Bisimulation 187

(a) there exists e = (l, a, ϕe, rste, l
′) ∈ E.

(b) If we denote

ϕeW
(x) =

{
ϕ(x)

flow(l,x) if flow(l, x) 
= 0 ,

ϕ(x) otherwise .

then the constraint ϕeW
is the following conjunction: ϕeW

=
∧

x∈X ϕe(x).
(c) rsteW

: X → Qn∪{⊥} where to each x ∈ X and edge e = (l, a, ϕe, rste, l
′) ∈

E

rsteW
(x) =

⎧⎪⎨
⎪⎩

⊥ if rst(x) = ⊥ ,
rst(x)

flow(l′,x) if flow(l′, x) 
= 0 ,

rst(x) if flow(l′, x) = 0 .

(2)

For the sequel, we denote the semantics of GS as T (GS) = (Q(GS),Mvs(GS), q0, δ)
and the semantics of GW as T (GW ) = (Q(GW ),Mvs(GW), q0, δW ).

For the sequel, given a configuration (l, v) ∈ Q(GS), we denote v∗ the follow-
ing variable valuation:

∀ x ∈ X : v∗(x) =

{
v(x)

flow(l,x) if flow(l, x) 
= 0

v(x) otherwise
(3)

We define the mapping γ1 : Q(GS) → Q(GW ) as follows:

∀q = (l, v) ∈ Q(GS), γ1 : (l, v) �→ (l, v∗) .

Clearly enough, γ−1
1 , the inverse of γ1, exists. Therefore, for any (l, v∗) ∈ Q(GW ),

γ−1
1 : (l, v∗) �→ (l, v) where

∀ x ∈ X : v(x) =

{
v∗(x) · flow(l, x) if flow(l, x) 
= 0 ,

v∗(x) otherwise .
(4)

By construction of T (GW ) we have (l, v) ∈ Q(GS).

3.2 Bisimulation Between

T (GS) and T (GW ) We now show that the mapping γ1 defined above is an alter-
nating bisimulation.

Lemma 3. γ1 witnesses that T (GS) �s T (GW ).

Proof. Note that, by definition, q∗
0 = γ1(q0) = q0 the initial configurations in the

two games (q0, q∗
0) ∈ γ1 as required.

Let q = (l, v) be a configuration in Q(GS), and let q∗ = γ1(q) = (l, v∗) be
a configuration in Q(GW ). Since the location l is the same, the observation is
preserved thus lbl(q) = lbl(q∗), so the first point in Definition 3 holds.
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We need to show that the 2nd item in Definition 3 holds, that is, for any two
configurations (l, v) in Q1(GS), and (l, v∗) in Q1(GW ) with ((l, v), (l, v∗)) ∈ γ1
and for any move m in Mvs(GS), there exists a move m∗ in Mvs(GW) such that
the following holds:

(δS((l, v),m), δW ((l, v∗),m∗)) ∈ γ1 . (5)

The trick here, is to use the same move m in both T (GS) and T (GW ).
Let (l, v) be a configuration of Pl1, and let m be a move, we first prove that

δW ((l, v∗),m) is well defined. Since (l′, v′) = δS((l, v),m) with m = (a, t), there
exists e = (l, a, ϕe, rste, l

′) in GS such that for each x ∈ X,

v(x) + t · flow(l, x) ∈ ϕe(x) (6)

and v′ = rste(v). By transformation of Sect. 3.1, there exists an edge e∗ =
(l, a, ϕe∗ , rste∗ , l

′
) in GW . Now, we show that: v∗ + t · flowW (l, ·) satisfies ϕe∗ .

To this end, observe that Identity (6) implies that for all x ∈ X:

flow(l, x) 
= 0 =⇒ v(x)
flow(l, x)

+ t ∈ ϕe(x)
flow(l, x)

=⇒ v∗(x) + t ∈ ϕe∗(x)

where the second implication is because flow(l, x) 
= 0 =⇒ flowW (l, x) = 1.
When flow(l, x) = 0, v∗(x) = v(x), ϕe∗(x) = ϕe(x) and Identity (6) becomes

v(x) ∈ ϕe(x). Hence v∗(x) ∈ ϕe∗(x). This implies that δW (((l, v∗),m) is indeed
well defined. We still need to show that it is the image of δS((l, v),m) by γ1.

Let (l′, v′) = δS((l, v),m), then we need to study the following cases:
(1) For x ∈ X with flow(l, x) 
= 0 and rste(x) = ⊥:

γ1((l′, v′(x)) =
(

l′,
v′(x)

flow(l′, x)

)
=

(
l′,

v(x) + t · flow(l, x)
flow(l′, x)

)

=
(

l′,
v(x)

flow(l, x)
+ t

)
because flow(l′, x) = flow(l, x), cf.Eq. (3),

= (l′, v∗(x) + t) because flowW (l′, x) = 1, cf.Eq. (1)
= δW ((l, v∗(x)),m) .

(2) For all x ∈ X with flow(l, x) = 0 and rste(x) = ⊥:

γ1((l
′, v′(x)) = γ1(l

′, v(x)) because flow(l, x) = 0, cf.Eq. (1)

=
(
l′, v∗(x)

)
= δW ((l, v∗(x)), m) because flowW (l′, x) = 0, cf.Eq. (1).

(3) For all x ∈ X with flow(l′, x) 
= 0 and rste(x) 
= ⊥:

γ1((l′, v′(x)) =
(

l′,
v′(x)

flow(l′, x)

)

=
(

l′,
rste(x)

flow(l′, x)

)
because rste(x) 
= ⊥

= (l′, rste∗(x)) because flow(l′, x) = 1, cf.Eq. (1)
= δW ((l, v∗(x)),m) .
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(4) Finally for all x ∈ X with flow(l, x) = 0 and rste(x) 
= ⊥:

γ1((l′, v′(x)) = (l′, v′(x)) = (l′, rste(x)) = (l′, rste∗(x)) = δW ((l, v∗(x)),m) .

In all of the above cases, we have shown that γ1(δS((l, v),m)) =
δW (γ1((l, v)),m), that is, γ1 preserves the transition relation in both T (GS) and
T (GW ).

Now, for proving the 3rd point in Definition 3, Let q = (l, v) be a configura-
tion of Pl2, and let m be a move in Mvs(GW), we take the same move in Mvs(GS),
we first prove that δS((l, v),m) is well defined in T (GS).

Since (l′, v∗′) = δW ((l, v∗),m) with m = (a, t) there exists e∗ =
(l, a, ϕe∗ , rste∗ , l′) in GW such that for each x ∈ X,

v∗(x) + t · flowW (l, x) ∈ ϕe∗(x) (7)

and v∗′ = rste∗(v). By transformation of Sect. 3.1, the existence of e∗ in GW

is the result of the existence of e = (l, a, ϕe, rste, l
′) in GS . Now we show that

v + t · flow(l, ·) satisfies ϕe. Observe that identity (7) implies that for all x ∈ X:

flowW (x) 
= 0 =⇒ v∗(x) + t ∈ ϕe∗(x)

=⇒ v(x)
flow(l, x)

+ t ∈ ϕe(x)
flow(l, x)

=⇒ v(x) + t · flow(l, x) ∈ ϕe(x)

where the second implication is because flowW (x) = 1 implies flow(x) 
= 0.
When flowW (l, x) = 0, v(x) = v∗(x), ϕe(x) = ϕe∗(x), and identity (7) becomes
v∗(x) ∈ ϕe∗(x), hence v(x) ∈ ϕe(x). This implies that q′ = δS((l, v),m) is indeed
well defined with q′ = (l′, v′) and v′ = rste(v+ t ·flow(l, ·)). We still need to prove
that the image of δS((l, v),m) by γ1 is δW ((l, v∗),m).

For (l′, v∗′) = δW ((l, v∗),m) and we name (l′, v′) = δS((l, v),m), we have
∀x ∈ X with flowW (l, x) 
= 0 and rste∗(x) = ⊥:

(l′, v∗′(x)) = (l′, v∗(x) + t) =
(

l′,
v(x)

flow(l, x)
+ t

)

=
(

l′,
v(x) + t · flow(l, x)

flow(l, x)

)
=

(
l′,

v(x) + t · flow(l, x)
flow(l′, x)

)

=
(

l′,
v′(x)

flow(l′, x)

)
= γ1(l′, v′(x))

Consider the case flowW (l, x) = 0, hence for all x ∈ X with rste∗(x) = ⊥:

(l′, v∗′(x)) = (l′, v∗(x)) = γ1(l′, v(x)) = γ1(l′, v′(x))
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Now for all x ∈ X with flowW (l′, x) 
= 0 and rste∗(x) 
= ⊥:

(l′, v∗′(x)) = (l′, rste∗(x)) =
(

l′,
rste∗(x)
flow(l′, x)

)

=
(

l′,
v(x) + t · flow(l, x)

flow(l, x)

)
=

(
l′,

v(x) + t · flow(l, x)
flow(l′, x)

)

=
(

l′,
v′(x)

flow(l′, x)

)
= γ1(l′, v′(x))

Finally, for all x ∈ X with flowW (l′, x) = 0 and rste∗(x) 
= ⊥:

(l′, v∗′(x)) = (l′, rste∗(x)) = (l′, rste(x) = (l′, v′(x)) = γ1(l′, v′(x))

Therefore, γ1(δS((l, v),m)) = δW (γ1((l, v)),m). This ends the proof of this
lemma. ��
Lemma 4. γ−1 witnesses that T (GW ) �s T (GS).

Proof. Note that, by definition, q0 = γ−1
1 (q∗

0) the initial configurations in the
two games as required.

Let q∗ = (l, v∗) be a configuration in Q(GW ) and let q = (l, v) = γ−1
1 (q∗)

be a configuration in Q(GS). Since the location l is the same, the observation is
preserved thus lbl(q) = lbl(q∗), so the first point in Definition 3 holds.

We now show that γ−1
1 satisfies the 2nd point in Definition 3, for all

q∗ = (l, v∗) ∈ Q(GW ) and q = (l, v) = γ−1
1 (q∗) ∈ Q(GS). Assume that q∗ a con-

figuration of Pl1, for all m = (a, t) ∈ Mvs(T(GW)) and q∗′ = (l′, v∗′) = δW (q∗,m)
in T (GW ), we take the same move m in T (GS), we first prove that δS(q,m) is
well defined in T (GS), let us call it q′. Afterwards we prove that q′ = γ−1

1 (q∗′).
We have for each x ∈ X,

v∗′(x) = v∗(x) + t · flowW (l, x) ∈ ϕe∗(x)

And v∗′ = rste∗(v∗) for the edge e∗ = (l, a, ϕe∗(x), rste∗(x), l′), e∗ is obtained
from the edge e = (l, a, ϕ(x), rst(x), l′) in GS by transformation of Sect. 3.1. Now
we show that v + flow(l, ·) ∈ ϕe. For all x ∈ X and flow(l, x) 
= 0 we have

v∗(x) + t · flowW (l, x) ∈ ϕe∗(x)
=⇒ v∗(x) · flow(l, x) + t · flowW (l, x) · flow(l, x) ∈ ϕe∗(x) · flow(l, x)
=⇒ v(x) + t · flow(l, x) ∈ ϕe∗(x) · flow(l, x)
=⇒ v(x) + t · flow(l, x) ∈ ϕe(x)

For all x ∈ X and flow(l, x) = 0, we obtain v∗(x) = v(x) and ϕe∗(x) = ϕe(x). It
follows that v(x) ∈ ϕe(x). This implies that indeed q′ = δS(q,m) = (l′, v′) with
v′ = rste(v + t · flow(l, ·)) is well defined.

Now let us prove q′ = γ−1
1 (q∗′). For all x ∈ X:
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(1) For flow(l, x) 
= 0 and rste∗ = ⊥ we have:

γ−1
1 (l′, v∗′

) = (l′, v∗′
(x) · flow(l′, x) = (l′, (v∗(x) + t · flowW (l, x)) · flow(l′, x))

= (l′, (v∗(x) + t) · flow(l, x)) = (l′, (v∗(x) · flow(l, x) + t · flow(l, x)))
= (l′, v + t · flow(l, x)) = (l′, v′(x))

(2) For rste∗ 
= ⊥ and flow(l′, x) 
= 0 we have:

γ−1
1 (l′, v∗′) = (l′, v∗′

(x) · flow(l′, x) = (l′, rste∗(x) · flow(l′, x))
= (l′, rste(x)) = (l′, v′(x))

(3) For rste∗ 
= ⊥ and flow(l′, x) = 0 we have:

γ−1
1 (l′, v∗′) = (l′, v∗′

(x)) = (l′, rste∗(x)) = (l′, rste(x)) = (l′, v′(x))

We conclude that (l′, v′) = γ−1
1 (l′, v∗′).

Now, for proving the 3rd point in Definition 3: let q∗ be a configuration of
Pl2, and let m be a move in Mvs(GS) and q′ = (l′, v′) = δS((l, v),m) in T (GS),
we take the same move in Mvs(GW), we first prove that q∗′ = δW ((l, v∗),m) is
well defined in T (GW ), and then we prove that γ−1

1 (q∗′) = (q′).
Since q′ = (l′, v′) = δS((l, v),m) then there exists an edge e = (l, a, ϕe, rste, l

′).
By transformation there exists an edge in GW e∗ = (l, a, ϕe∗ , rste∗ , l′).

For each x ∈ X with flow(l, x) 
= 0, we have:

v(x) + t · flow(l, x) ∈ ϕe(x)

=⇒ v∗(x) · flow(l, x) + t · flow(l, x) ∈ ϕe(x)
flow(l, x)

· flow(l, x)

=⇒ v∗(x) + t ∈ ϕe∗(x)
=⇒ v∗(x) + t · flowW (l, x) ∈ ϕe∗(x) (8)

Notice that for flow(l, x) = 0, we obtain flowW (l, x) = 0, v∗(x) = v(x), ϕe(x) =
ϕe∗(x), hence v∗(x) ∈ ϕe∗(x). Let v∗′ = rste∗(v∗+t ·flowW (l, ·)). We have proved
that q∗′ = (l, v∗′) = δW ((l, v∗),m) is well defined.

Now we prove that γ−1
1 (l′, v∗′) = (l′, v′). For each x ∈ X consider the case

flow(l′, x) 
= 0 and rste∗ = ⊥,

γ−1
1 (l′, v∗′

(x)) = (l′, v∗′
(x) · flow(l′, x)) = (

l′, (v∗(x) + t · flowW (l, x)) · flow(l′, x))
=

(
l′, v∗(x) · flow(l′, x) + t · flow(l′, x))

=
(
l′, v∗(x) · flow(l, x) + t · flow(l, x))

=
(
l′, v(x) + t · flow(l, x)) = (l′, v′(x))

Now for each x ∈ X flow(l′, x) = 0 and rste∗ = ⊥,

γ−1
1 (l′, v∗′

(x)) = (l′, v∗′
(x)) = (l′, v∗(x)) = (l′, v(x)) = (l′, v′(x))
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Same for the case for each x ∈ X with rste∗(x) 
= ⊥ and flow(l′, x) = 0,

γ−1
1 (l′, v∗′

(x)) = (l′, v∗′
(x)) = (l′, rste∗(x)) = (l′, rste(x)) = (l′, v′(x))

Finally consider the case for each x ∈ X with rste∗(x) 
= ⊥ and flow(l′, x) 
= 0,

γ−1
1 (l′, v∗′

(x)) = (l′, rste∗(x) · flow(l′, x)) =
(

l′,
rste(x)

flow(l′, x)
· flow(l′, x)

)
=

(
l′, rste(x)

)
= (l′, v′(x))

This ends the proof. ��

4 From Initialized Stopwatch to Updatable Timed Games

The next step is to transform each initialized stopwatch game into a game where
the dynamics of each variable is never zero, by eliminating all the flows of value
zero. The games obtained by this transformation are called updatable timed
games.

Definition 5 (Updatable Timed Game). An updatable timed game GU of
n-dimension is an initialized singular game in which all variables are clocks, i.e.
flow(l, x) = 1 for any location l and any variable x ∈ X.

Note that these structures generalize timed games by allowing updates with any
rational value, similarly with updatable timed automata from [4].

4.1 Transformation

Given GW an initialized stopwatch game with n variables (whose semantics is
denoted T (GW ) in the sequel) we construct an updatable timed game in two
steps. We first transform GW into another stopwatch game GW in which the
locations carry some extra information about resets. Then this stopwatch game
is transformed into an updatable timed game.

The need for the intermediate stopwatch game comes from the fact that each
stopwatch in the original game is simulated by a clock in the resulting game.
But clocks are always incremented when time pass, so when some stopwatch in
a location l in which the stopwatch’s flow is 0 must be encoded with a clock,
we need to reset this clock on any transition leaving l. The value to which this
clock must be updated depends on the sequence of transitions through which l
has been reached. Along a finite run ρ ending with the edge e this reset value it
is the update to which the stopwatch was reset on the latest edge e′ when the
stopwatch’s flow changed from 1 to 0. These bits of memory are modeled by the
extra information encoded into locations of the new stopwatch game.

The formalization of the first transformation is the following:

GW = (l0, L1, L2,X,Act,Obs, flow,E, lbl)
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1. l0 = (l0, fl0) where fl0 : X → {0}.
2. L1 = L1 ×F where F is the set that consists of functions f : X → K⊥, where

K is the set of all constants used in GW and K⊥ = K ∪ {⊥}.
3. L2 = L2 × F .
4. lbl is extended over L1 ∪ L2 as expected.
5. E is the set of edges e = (l1, a, ϕ, rst, l2) where l1 = (l1, fl1), l2 = (l2, fl2) and

there exists an edge e ∈ E with e = (l1, a, ϕ, rst, l2) and for all x ∈ X:

fl2(x) =

⎧⎪⎨
⎪⎩

⊥ if flow(l2, x) = 1 ,

rst(x) if flow(l2, x) = 0 ∧ rst(x) 
= ⊥ ,

fl1(x) if flow(l2, x) = 0 ∧ rst(x) = ⊥ .

(9)

The semantics of GW that we call T (GW ) is as follows

T (GW ) = (Q(GW ),Mvs(GW), q0, δW )

Now we construct GU an updatable timed game from GW in the next step.
Step 2:

GU = (l0, L1, L2,X,Act,Obs,EU , lbl)

1. l0, L1, L2,Obs,Act, lbl are all same as in GW .
2. EU is the set of edges eU = (l1, a, ϕ, rstU , l2) with rstU : X → Qn ∪ {⊥} such

that for all e ∈ E with e = (l1, a, ϕ, rst, l2) we have for all x ∈ X,

rstU (x) =

{
fl(x) if fl(x) 
= ⊥ ,

rst(x) otherwise .
(10)

Note that if we have a reset of a variable x with flow(l, x) = 0, then rstU (x) =
rst(x) = fl(x). Note that EU is same as E with different reset function rstU (X)
on each edge.

The transition system of the updatable timed game GU , that we call T (GU ) is
as follows

T (GU ) = (Q(GU ),Mvs(GU), q0U , δU )

We define the relation β1 ⊆ Q(GW ) × Q(GW ) as follows:

β1 = {((l, v), (l, v)) | (l, v) ∈ Q(GW ), l = (l, fl) where fl : X → K⊥ and v = v}
And its inverse β−1

1 ⊆ Q(GW ) × Q(GW ),

β−1
1 = {(

(l, v), (l, v)
) | (l, v) ∈ Q(GW ), ((l, v), (l, v)) ∈ β1}

4.2 Bisimulation Between T (GW ) and T (GW )

In this section we prove that β1 is a bisimulation relation.

Lemma 5. β1 witnesses T (GW ) �s T (GW ).
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Proof. Note that, already by definition (l0, v0) = ((l0, fl0), v0) and (l0, v0) are the
initial configurations in the two games, hence

(
(l0, v0), (l0, v0)

) ∈ β1 as required.
Let (l, v) ∈ Q(GW ) and (l, v) = ((l, fl), v) ∈ Q(GW ) with

(
(l, v), (l, v)

) ∈ β1.
Since the location l is the same, the observation is preserved thus lbl(l, v) =
lbl(l, v). So the first point of the Definition 3 holds.

Let (l, v) be a configuration of Pl1, let m = (a, t) ∈ Mvs(GW) and (l′, v′) =
δW ((l, v), (a, t)) in T (GW ). To prove point 2 in Definition 3, we take the same
m in Mvs(GW) and prove that δW ((l, v), (a, t)) = (l′, v′) is well defined, and
then

(
(l′, v′), (l′, v′)

) ∈ β1. δW ((l, v), (a, t)) = (l′, v′) implies that there exists
an edge e = (l, a, ϕe, rste, l

′) in GW , hence, by construction 9 there exists e =
((l, fl), a, ϕe, rste, (l′, fl′)) in GW . This implies that δW ((l, v), (a, t)) = (l′, v′) with
l′ = (l′, fl′) is well defined in T (GW ). It follows that

(
(l′, v′), (l′, v′)

) ∈ β1 since
v′ is the same for the two configurations and fl′ is well defined.

For proving the third point of the Definition 3, let (l, v) be a configuration
of Pl2, and m = (a, t) ∈ Mvs(GW) with δ (((l, fl), v), (a, t)) = ((l′, fl′), v′) in
GW . Similarly to the above proof, we take the same move m in Mvs(GW), then
prove that δW ((l, v), (a, t)) = (l′, v′) is well defined and

(
(l′, v′), (l′, v′)

) ∈ β1.
This follows by noting that the existence of transition δ (((l, fl), v), (a, t)) =
((l′, fl′), v′) implies there exists an edge e = ((l, fl), a, ϕe, rste, (l′, fl′)) in GW .
By construction 9, e is obtained from e = (l, a, ϕe, rste, l

′) in GW . Note that
rste is preserved by the construction. Hence (l′, v′) = δW ((l, v), (a, t)) with v′ =
rste(v + t · flow(l, ·)) is well defined, which ends the proof. ��
Lemma 6. β−1

1 witnesses T (GW ) �s T (GW ).

The proof of this lemma is similar to the proof of Lemma 5
We define the mapping β2 : Q(GW ) → Q(GU ) as follows:

∀(l, v) = ((l, fl), v) ∈ Q(GW ), β2 : ((l, fl), v) �→ ((l, fl), v) .

Lemma 7. β2 is the bisimulation between T (GW ) and T (GU ).

Proof. β2 is the identity function hence it is clear that it is a bisimulation. ��
Now let β : Q(GW ) → Q(GU ) as β = β1 ◦β2. And it’s inverse β−1 : Q(GU ) →

Q(GW ) as β−1 = β−1
2 ◦ β−1

1 . Lemmas 7 and 1 directly imply the following:

Corollary 1. β is a bisimulation between T (GW ) and T (GU ).

5 From Updatable Timed Game to Timed Game

Definition 6 (Timed Turn Based Game). A timed turn based game GT of
n-dimension is an updatable timed game in which clocks can only be reset to 0.

In the sequel, in an edge e = (l, a, ϕe, r, l
′) of a timed automaton, we consider

that r ⊆ X denotes the set of clocks which are reset along this edge.
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5.1 Transformation

Given an updatable game GU = (l0, L1, L2,X,Act,Obs,E, lbl) whose semantics
is denoted T (GU ) = (Q(GU ),Mvs(GU), q0, δU ) we now construct the timed game
GT as:

GT = (lt0, L
t
1, L

t
2,X,Act,Obs,Et, lbl)

where

1. lt0 = (l0, gl0) where gl0 : X → {0}.
2. Lt

1 = L1 × Ft where Ft is the set of functions g : X → KU , where KU is the
set of constants used in the definition of GU .

3. Lt
2 = L2 × Ft.

4. lbl is extended over Lt
1 ∪ Lt

2 as expected.
5. Et is the set of edges et = (lt1, a, ϕet , r, lt2) where lt1 = (l1, gl1) and lt2 = (l2, gl2)

such that there exists an edge e ∈ E with e = (l1, a, ϕe, rste, l2) and for all
x ∈ X:

ϕet =
∧
x∈X

ϕe(x) with ϕet(x) = ϕ(x) − gl1(x) (11)

gl2(x) =

{
rst(x) if rst(x) 
= ⊥ ∧ x ∈ r

gl1(x) if rst(x) = ⊥ (12)

x ∈ r ⇐⇒ rste(x) 
= ⊥ (13)

The transition system of the constructed timed game GT is denoted:

T (GT ) = (Q(GT ),Mvs(GT), qt
0, δT )

We define the relation γ2 ⊆ Q(GU ) × Q(GT ) as follows:

γ2 = {((l, v), (lt, vt)) |(l, v) ∈ Q(GU ), lt = (l, gl) where gl : X → KU

and for all x ∈ X vt(x) = v(x) − gl(x)}

And its inverse γ−1
2 ⊆ Q(GT ) × Q(GU ),

γ−1
2 = {(

(lt, vt), (l, v)
) |(lt, vt) = ((l, gl), vt) ∈ Q(GT ),

∀ x ∈ X v(x) = vt(x) + gl(x)}

5.2 Bisimulation Between T (GU ) and T (GT )

We now show that the mapping γ2 defined above is an alternating bisimulation.

Lemma 8. γ2 witnesses that T (GU ) �s T (GT ).
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Proof (Sketch). Recall that (lt0, v
t
0) = ((l0, gl0), v

t
0) is the initial configuration in

T (GT ) and (l0, v0) is the initial configuration in T (GU ), where v0 = vt
0, hence

((l0, v0), (lt0, v
t
0)) ∈ γ2 as required. Now we need to prove the three points in

Definition 3.
Let (l, v) ∈ Q(GU ) and (lt, vt) = ((l, gl), vt) ∈ Q(GT ) with ((l, v), (lt, vt)) ∈

γ2. Since the location l is the same, the observation is preserved thus lbl(l, v) =
lbl(lt, vt), so the first point in Definition 3 holds.

Next we show that γ2 satisfies the 2nd point in Definition 3. Meaning for
(l, v) ∈ Q1(GU ), m = (a, t) ∈ Mvs(GU) and δU ((l, v),m) = (l′, v′), we apply the
same move in T (GT ) and we first prove that δT ((lt, vt),m) = (lt′

, vt′) is well
defined, and then

(
(l′, v′), (lt′

, vt′)
)

∈ γ2.
To show that γ2 satisfies the third point in Definition 3, for each (l, v) in

Q2(GU ), each m = (a, t) in Mvs(GT), and each δT (((l, gl), vt),m) = ((l′, gl′), vt′),
we apply the same move in T (GU ). This requires showing that δU ((l, v),m) =
(l′, v′) is well defined, and then that

(
(l′, v′), ((l′, gl′), vt′)

)
∈ γ2. The details for

this part of the proof are available in the extended version [5]. ��
Lemma 9. γ−1

2 witnesses that T (GT ) �s T (GU ).

Proof (Sketch). Recall that the initial configuration in T (GT ) is (lt0, v
t
0) =

((l0, gl0), v
t
0) and (l0, v0) is the initial configuration in T (GU ), where vt

0 = v0
because gl0 = 0, hence ((lt0, v

t
0), (l0, v0)) ∈ γ−1

2 as required. The scheme is as
above, now we prove step by step the three points in Definition 3.

Notice that the location l is the same for (lt, vt) and (l, v), hence the obser-
vation is preserved. It follows that lbl(lt, vt) = lbl(l, v), therefore the first point
in Definition 3 holds. Then we prove that γ−1

2 satisfies the second point in
Definition 3. Meaning that for (lt, vt) ∈ Q1(GT ), a configuration of Pl1, let
m = (a, t) ∈ Mvs(GT) and δT (((l, gl), vt),m) = ((l′, gl′), vt′). By applying the
same move in T (GU ), we prove first that δU ((l, v),m) = (l′, v′) is well defined,
and later on we prove

(
((l′, gl′), vt′), (l′, v′)

)
∈ γ−1

2 .

To show that γ−1
2 satisfies the third point in Definition 3, for each

configuration ((l, gl), vt) in Q2(GT ), each m = (a, t) in Mvs(T(GU)), and
each δU ((l, v),m) = (l′, v′), we take the same move m in Mvs(T(GT)). We
then prove that δT (((l, gl), vt),m) = ((l′, gl′), vt′) is well defined and that((

(l′, gl′), vt′)
, (l′, v′)

)
∈ γ−1

2 . Again, the details of this part of the proof is
available in the extended version [5]. ��
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Fig. 1. Summary of the chain of transformations

6 Conclusion

We have shown that each initialized singular game is bisimilar with a timed
game in the following way. First, given an initialized singular game T (GS) we
construct an initialized stopwatch game T (GW ). We give the relation γ1 and
prove that it is a bisimulation relation as defined in Definition 3. Then given
an initialized stopwatch game T (GW ), we construct an updatable timed game
T (GU ). We construct the relation β and prove that it is a bisimulation relation
and finally given an updatable timed game T (GU ), we construct a timed game
T (GT ). We give the relation γ2 and prove that it is a bisimulation relation. These
constructions are summarized in Fig. 1.

The decidability of the synthesis problem for LTL specifications and initial-
ized singular games can then be seen as a corollary of this result.

As future research directions, we plan to extend this result by carefully adapt-
ing the results for larger sub-classes of initialized rectangular hybrid automata
from [9] and hence weakening the constraint that the derivative of each variable
must be piece-wise constant. We also plan to apply our methodology to real-life
case-studies.
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on ARM Cortex-M4 Cores
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Abstract. FreeRTOS is a real-time kernel with configurable schedul-
ing policies. It is one of the most popular real-time kernel for embedded
deviced due to its portability and configurability. We formally analyze
the FreeRTOS scheduler on ARM Cortex-M4 processor in this work.
Concretely, we build a formal model for the FreeRTOS ARM Cortex-M4
port and apply model checking to find errors in our models for FreeRTOS
example applications. Intriguingly, several errors are found in our appli-
cation models under different scheduling policies. In order to confirm our
findings, we modify application programs distributed by FreeRTOS and
reproduce assertion failures on the STM32F429I-DISC1 board.

Keywords: model checking · real-time kernel · ARMv7-M architecture

1 Introduction

FreeRTOS is a popular open-sourced real-time kernel [3]. It offers multi-
tasking on uni-processor embedded devices. Through multi-tasking, applications
can be divided into several simpler tasks sharing processor time. Multi-tasking
on the other hand can induce undesirable phenomena such as deadlocks or star-
vation. It is crucial to prevent such errors in deployment. Multi-tasking errors
nevertheless are notoriously evasive. Due to complex interleaving among tasks,
a very limited number of system behaviors can be tested. Software testing often
fails to detect multi-tasking errors.

Model checking is a formal technique to analyze properties about sys-
tems [8]. Behaviors of the system under verification are first specified in a formal
model. Model checkers then verify the model automatically with formal proper-
ties provided by users. Different from testing tools, model checkers search model
behaviors exhaustively. If a deviant behavior is found, it is reported to verifiers. If
no deviance can be found, all model behaviors conform to the specified property.
The formal model is thus verified.

In this paper, we develop formal models for the FreeRTOS scheduler on ARM
Cortex-M4 processors and analyze its properties with the Spin model checker.
We build formal models for the ARM Cortex-M4 interrupt handling mechanism
based on the reference manual. Optimizing mechanisms such as tail chaining
are implemented in our models. On top of our hardware model, we also build
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Ogata et al. (Eds.): ICFEM 2024, LNCS 15394, pp. 199–215, 2024.
https://doi.org/10.1007/978-981-96-0617-7_12
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formal models for the FreeRTOS scheduler, thread-safe data structures, and its
applications by examining source codes of the FreeRTOS ARM Cortex-M4 port.
Particularly, all three FreeRTOS scheduling policies are specified in our behavior
models.

With our behavior models for FreeRTOS, it remains to identify formal prop-
erties to check. Such properties however can be tricky to find. For formal anal-
ysis, high-level informal properties such as deadlocks or starvation need to be
specified concretely. In complex systems like FreeRTOS, high-level properties
are often asserted with caveats to preclude minor or unrealistic errors. It can
be very tedious to specify caveats formally. Moreover, one can not be sure of
these caveats without FreeRTOS developers’ help. Different developers can also
have different views on properties and caveats. Formal properties specified by
verifiers themselves can be contrived or even incorrect.

We solve the property specification problem by verifying example applica-
tions in the FreeRTOS distribution. In order to highlight FreeRTOS features,
developers provide a number of example applications. Most example applications
contain assertions to specify expected behaviors during execution. No assertion
failure should be observed on any multi-tasking execution. In order to verify
whether all assertions hold in all possible executions, we verify them with the
Spin model checker. Intriguingly, the model checker reports errors on several
example application models.

Assertion errors found in formal analysis need not imply assertion failures in
real execution. In order to confirm our findings, we modify FreeRTOS example
applications to reproduce error traces found by the Spin model checker. If asser-
tion errors in formal analysis are genuine, we should observe assertion failures
on real hardware. Using the STM32F429I-DISC1 board from STMicroelectron-
ics, we successfully reproduce assertion failures in our experiments. We use the
remote GDB debugger to confirm failures at intended assertions. All assertion
failures require delicate interactions among tasks, the FreeRTOS scheduler, and
the ARM Cortex-M4 interrupt mechanism.

This paper is organized as follows. Section 2 introduces the Spin model
checker. Section 3 presents analysis methodology. Section 4 briefly introduces
our behaviors models for the FreeRTOS scheduler and ARM Cortex-M4 port.
Section 5 defines properties of our models. Section 6 reports verification results
and discussion. Section 7 gives related works. We conclude this work in Sect. 8.

2 Background

Model checking is an automatic formal verification technique. In model checking,
behaviors of systems under verification are specified as formal models. Properties
about systems are also formalized by logical properties about formal models.
Given a formal model and a logical property, a model checker automatically
verifies the property against the model through mathematical reasoning. If the
model is verified, the property holds in the model mathematically. If the model
is not verified, the model checker returns a trace to witness the error.
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Spin is a model checker designed for analyzing communicating concurrent
processes [16]. It supports the Promela (PROcess MEta LAnguage) language
to specify system behaviors. A Promela model consists of a set of processes.
A process contains a sequence of commands. Commands must be enabled before
executed. Enabled commands in different processes are executed interleavingly.
That is, exactly one enabled command is executed at any time. If several com-
mands from different processes are enabled, one of the enabled commands is
executed non-deterministically. If there is no enabled command, it is a dead-
lock. The Promela language allows verifiers to specify assertions in processes.
An assertion command contains a Boolean expression and is always enabled.
When an assertion command is executed, it evaluates its Boolean expression.
If the value is false, it is an assertion error. Recall that enabled commands are
executed non-deterministically. Non-deterministic executions result in different
traces. An assertion error may appear in some traces but not all of them.

Since traces correspond system behaviors, a deadlock or an assertion error
in any trace represent undesirable behaviors. We therefore would like to check
if deadlocks or assertion errors occur among all traces. The Spin model checker
systematically explores all traces with sophisticated algorithms. If a deadlock or
an assertion error occurs in any trace, Spin will find the error trace and report it
as a witness. If Spin does not find any deadlock or assertion error after exploring
all traces, the model is verified.

In addition to assertions, Spin allows verifiers to specify properties with
Linear Temporal Logic (LTL) formulas. Particularly, we will use the LTL formula
�♦Loc where Loc denotes a process location. A trace satisfies �♦Loc if it visits
the process location Loc infinitely many times. A process satisfies �♦Loc if
all its traces satisfy �♦Loc. The formula �♦Loc specifies that a process is free
of starvation. For instance, let Loc be the location where a process finishes its
job. A trace satisfies �♦Loc if the process finishes its job infinitely many times
and hence without starvation.

3 Methodology Overview

To support different architectures, the FreeRTOS scheduler contains both
architecture-dependent and -independent codes. Scheduling policies should be
independent of underlying architectures. They provide abstract programming
models for applications. Their implementations however necessarily depend on
interrupt mechanisms in underlying architectures. Concretely, the FreeRTOS
scheduler is called during periodic and sporadic interrupts in the ARM Cortex-
M4 port. For exhaustive analysis, it is essential to consider all possible interrupt
sequences. Generating such interrupt sequences for testing is infeasible. A more
effective technique is required.

We develop a Promela model for the interrupt mechanism on ARM Cortex-
M4 processors. Behaviors of ARM Cortex-M4 processors are carefully formalized
in our model. Importantly, we model interrupts through non-determinism. Non-
deterministic interrupts allow us to explore interrupt sequences unattainable by
testing.
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On top of our formal model for the ARM Cortex-M4 interrupt mechanism,
we then specify a Promela model for the architecture-independent codes in
the FreeRTOS scheduler. All three FreeRTOS scheduling policies are specified
in our model. Our formal model for the FreeRTOS scheduler on ARM Cortex-
M4 processors enables extensive analysis on task synchronization. We moreover
build formal models for thread-safe data structures widely used by FreeRTOS
applications like queues and locks.

With formal models, we proceed to verify properties about the FreeRTOS
scheduler. Although abstract properties such as the absence of deadlock and star-
vation are easily said, they are not precise enough for formal analysis. Addition-
ally, properties are unlikely to be satisfied without provisions. Without FreeR-
TOS developers’ inputs, contrived or even misleading properties can be verified
meaninglessly.

We address this problem by verifying FreeRTOS example applications. Sim-
ilar to most open-sourced projects, FreeRTOS provides example applications to
illustrate its features. These applications contain assertions to specify expected
behaviors. These assertions are properties written by FreeRTOS developers. No
assertion failure should be observed under all circumstances. In order to verify
assertions in FreeRTOS example applications, we build their formal models and
check if an assertion error might occur. Intriguingly, several assertion errors were
found in our analysis.

It is important to recall that formal models are different from real hardware
and software by definition. Assertion errors found on the models do not nec-
essarily correspond to assertion failures on real systems. In order to validate
our findings, we examine the error traces found by the Spin model checker and
reproduce them on the STM32F429I-DISC1 board. We use the remote debugger
GDB to confirm assertion failures on the ARM Cortex-M4 board. Errors found
by our formal analysis are successfully realized on the development board. These
assertion failures require intricate interrupt events. They are unlikely to be found
by traditional testing.

4 FreeRTOS Scheduler Model

Our goal is to develop Promela models for the ARM Cortex-M4 interrupt
mechanism, the FreeRTOS scheduler, thread-safe data structures, and example
applications. An application has a number of tasks to be executed by the proces-
sor. When an interrupt is triggered, its interrupt handler will be executed by the
processor. We therefore say a task or an interrupt handler is an execution unit.
In our model, an execution unit is formalized as a Promela process. Commands
in a process thus specify the sequential computation of the execution unit.

4.1 Execution Units

In Promela, an enabled command is executed non-deterministically among all
such commands in all processes. Execution units however need to be scheduled by
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our formal scheduler model before execution. To this end, we define the global
variable EP (for Executing Process) and assign each execution unit a unique
identification number. Every command in execution units are added with the
condition EP == id . The FreeRTOS scheduler model in turn assigns the variable
EP to elect next command.

Task. Typical FreeRTOS tasks loop forever and never terminate. Their models
are Promela processes with infinite loops.

ARM Cortex-M4 Interrupt Handler. For ARM Cortex-M4 processors, an
interrupt is triggered when it is set to the pending state. When an interrupt is
pending, the processor decides whether the current execution should be inter-
rupted. If the pending interrupt is unmasked and has a priority over the current
execution, the current execution is interrupted by the pending interrupt and the
corresponding interrupt handler is executed.

ARM Cortex-M4 processors optimizes nested interrupts. When returning
from an interrupt handler, the processor checks if there is any pending interrupt
with a priority over the interrupted execution. If so, the processor proceeds to
the pending interrupt rather than the interrupted execution. This optimization
is called tail chaining.

Similar to task models, our interrupt models are Promela processes with
infinite loops. Commands within the loops are guarded with the EP variable.
An iteration in the interrupt model is executed one time whenever the interrupt
conditions (pending, masking, and priority) are satisfied. Tail chaining is also
specified in our models.

4.2 FreeRTOS Scheduler

The FreeRTOS scheduler provides three scheduling policies. In cooperative
scheduling, a running task has to yield the processor explicitly. In preemptive
scheduling without time slicing, a running task can be preempted by tasks with
higher priorities. Finally, a task can moreover be interrupted by using up its
time slice in preemptive scheduling with time slicing. The next execution task is
elected by the policy.

In the FreeRTOS Cortex-M4 port, scheduling policies are implemented via
two interrupt handlers: PendSV and SysTick. The interrupt handler for the
software interrupt PendSV elects the next execution task. The PendSV interrupt
is triggered whenever a task needs to be rescheduled in all scheduling policies.

The SysTick interrupt implements the time slicing policy. It is triggered by a
hardware clock periodically. If time slicing is enabled, the SysTick interrupt han-
dler in turn triggers the PendSV interrupt. When the SysTick interrupt handler
finishes, the PendSV interrupt handler will be executed directly by tail chaining.

Our Promela model follows the FreeRTOS Cortex-M4 port to specify the
scheduler in PendSV and SysTick interrupt models. Since the Promela lan-
guage is timeless, our model cannot trigger the SysTick interrupt periodically.
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Effectively, the SysTick interrupt is triggered arbitrarily in our formalization.
The abstraction ensures that all SysTick interrupt sequences in real world are
subsumed in our model. If there is any failure among all real interrupt sequences,
it will be exposed in our model. However, not all interrupt sequences in our
model are real. An error found in the model can be spurious. It has to be vali-
dated by corresponding failures in real hardware.

In cooperative scheduling, a task calls the FreeRTOS yield function to release
the processor. The yield function triggers the PendSV interrupt to elect a task in
the PendSV interrupt handler. It is straightforward to define the yield function
in our model.

4.3 Task Synchronization

In addition to task scheduling, the FreeRTOS scheduler also provides basic func-
tions for task synchronization. More concretely, a task can be delayed for a speci-
fied duration; it can also be suspended indefinitely. When a task is delayed or sus-
pended, it is moved to a delay or suspended queue respectively and hence cannot
be scheduled for execution. Delayed tasks can be rescheduled when their delay
duration expire. Suspended tasks can be rescheduled when they are resumed by
the running task.

In the FreeRTOS Cortex-M4 port, basic task synchronization functions are
implemented by the PendSV and SysTick interrupt handlers as well. The SysTick
interrupt handler checks if any task in the delay queue has expired its duration
periodically. If so, the interrupt handler removes such tasks from the delay queue.
For suspended tasks, they are removed from the suspended queue when they are
resumed by the running task.

If preemptive scheduling is disabled, the running task continues its execution
until it yields the processor. If preemptive scheduling is enabled, the PendSV
interrupt is triggered when the tasks removed from the delay or suspended queues
have a priority over the running task. The FreeRTOS scheduler elects a task with
the highest priority for execution. A previously delayed or suspended task will
continue its execution; and the running task will be preempted if it does not
have the priority.

To handle the degenerative scenario where all tasks are delayed or suspended,
FreeRTOS adds an idle task. The idle task has the lowest priority and cannot
be delayed nor suspended. Instead, it can be configured to yield the processor
or not. If the idle task should yield, it yields the processor to the next scheduled
task immediately. Otherwise, the idle task loops until it is interrupted. The idle
task is also formalized in our model.

Our model for task synchronization mostly follows the FreeRTOS Cortex-M4
port. One major difference between our model and the port is timelessness. Since
delay duration cannot be formalized explicitly, we formalize delay duration by
a Tick counter and a set of Delay counters. When a task model is delayed, the
corresponding Delay counter is set. When the SysTick interrupt handler model
is executed, it increases the Tick counter by one. The Delay counter of a task
model expires if it equals the Tick counter. When their counters expire, the
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SysTick interrupt handler model removes such tasks from the delay queue. All
counters are reset when a task model is added to or removed from the delay
queue to prevent counter overflow.

4.4 Thread-Safe Data Structures

In addition to task synchronization, FreeRTOS provides thread-safe data struc-
tures for message passing and advanced synchronization among tasks. A thread-
safe structure consists of its data and a waiting task queue. A task modifies a
thread-safe structure if its data are ready. Otherwise, the task is blocked. When a
task is blocked, it is moved to the waiting task queue of the thread-safe struc-
ture for specified duration. Different from task synchronization, tasks can be
unblocked when its duration expires or data become ready. It is a failure if the
duration of a blocked task expires before the data are ready.

FreeRTOS implements thread-safe queues for message passing. A thread-safe
queue contains a bounded buffer as its data. The capacity of the buffer is specified
by programmers. The buffer is ready when it is neither full for sending nor empty
for receiving message. When a task modifies an unready buffer, it is blocked for
the specified duration. Consider a sender is blocked by sending a message to
a full buffer. When a message is removed from the buffer, the sender will be
unblocked immediately. If the buffer remains full when the duration expires, the
sender receives a failure. The duration can be zero. It is a failure if the thread-safe
queue is currently not ready.

FreeRTOS also offers thread-safe locks. A thread-safe lock uses a counter
as its data. Programmers can initialize the counter. If the counter is a positive
integer, it means the lock is ready to be taken by tasks. Otherwise, the lock
is not ready. Tasks are blocked for a specified duration if they try to take an
unready lock. The duration can be zero or a positive integer. It is a failure if the
lock remains unready when the duration expires. No task will be blocked when
it gives the lock.

Thread-safe structures are widely used in FreeRTOS applications. They are
specified in our models. Thanks to our ARM Cortex-M4 interrupt and FreeRTOS
scheduler models, our thread-safe structure models mostly follow the FreeRTOS
Cortex-M4 port.

4.5 Example Applications

Tasks behave very differently in different scheduling policies. Consider a task
which never yields. In preemptive scheduling, such a task can be preempted by
other tasks with sufficient priorities. Tasks with higher priorities can still be
scheduled for execution. On the other hand, a never-yielding task is never pre-
empted in cooperative scheduling. Since other tasks will not execute, no progress
is made. To ensure progress, FreeRTOS developers make low-priority or never-
yielding tasks actively yield the processor when preemption is disabled. Such
intricacies can be a burden to programmers.
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To help programmers develop their applications smoothly, FreeRTOS pro-
vides example applications in its distribution. Particularly, mutexes and
semaphores are used for task synchronization. Thread-safe queues are also
found in applications for message passing. We have constructed formal models
for eight example applications such as PollQ, Semtest, BlockQ, QPeek, Dynamic,
Countsem, Recmutex, and GenQTest. These applications illustrate task synchro-
nization or thread-safe structures in FreeRTOS. They undoubtedly are relevant
to the formal analysis of FreeRTOS scheduler in this work.

5 Formal Properties

Formal analysis of FreeRTOS scheduler demands formal properties. Such prop-
erties nevertheless are not always obvious to verifiers. High-level properties are
too obscure to be formalized. Local properties are often contrived with little
relevance. To avoid such pitfalls, we verify assertions annotated by developers in
FreeRTOS distribution.

Assertions in FreeRTOS scheduler detect errors in tasks and thread-safe
structures at runtime. Task assertions fail when the scheduler resumes a non-
suspended task. Assertions in thread-safe structures fail when a mutex is used as
a semaphore, or a mutex inherits the priority of a wrong task. Other assertions
check the capacity of thread-safe buffers and task priorities. Those assertions are
verified in our formal analysis.

Not all assertions are similar however. To organize our presentation, we clas-
sify assertions in example applications into two categories. Intuitively, an asser-
tion specifies a safety property if it indicates that a bad event should never
happen; an assertion specifies a liveness property if it indicates that a good
event should always happen.

5.1 Safety

It is straightforward to specify safety properties with assertions. Programmers
only need to write a Boolean expression deemed to be true in an assertion. In
FreeRTOS example applications, the following safety properties are found:

(S0) If a task is delayed for synchronization with other tasks, other tasks must
finish before the delay duration expires.

(S1) If a task is blocked by thread-safe data, data must be ready when it is
unblocked.

(S2) If a task expects a thread-safe data to be ready, the data must be ready.
(S3) Messages received through a thread-safe queue must preserve their order.
(S4) Mutexes and binary semaphores must ensure mutual exclusion of critical

sections.
(S5) If a thread-safe lock is taken once, it must be given eventually.
(S6) A low-priority task must inherit priorities when its mutex was taken by

tasks with higher priorities and recover its priority after releasing the
mutex.
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Property (S0) checks if task synchronization is used properly. Property (S1)
checks if thread-safe data are implemented correctly. Property (S2) is a special
case of property (S1) where the block duration is zero. Property (S3) checks
messages are delivered in order by thread-safe queues. Properties (S4) and (S5)
check mutexes and semaphores are implemented correctly. Finally, property (S6)
checks whether priority inheritance is implemented correctly.

Table 1. Properties in FreeRTOS
Applications

Safety Liveness

S0 S1 S2 S3 S4 S5 S6

PollQ ✓ ✓ ✓ ✓

Semtest ✓ ✓ ✓ ✓ ✓

BlockQ ✓ ✓ ✓ ✓

QPeek ✓ ✓ ✓ ✓

Dynamic ✓ ✓ ✓ ✓ ✓

Countsem ✓ ✓ ✓

Recmutex ✓ ✓ ✓ ✓ ✓

GenQTest ✓ ✓ ✓ ✓ ✓ ✓

Not all properties are needed in every
application. Table 1 shows the safety
properties specified in the eight example
applications.

5.2 Liveness

If a task does nothing, no bad event can
happen. The task thus satisfies all safety
properties. To avoid such vacuous safety,
liveness properties are specified. FreeR-
TOS developers in fact write assertions
to ensure tasks are making progress. Con-
cretely, a task maintains a counter which
is incremented when a job is finished. The counter is checked by a monitor task
periodically. An assertion failure occurs if the counter remains unchanged
between checks.

Monitor tasks do not contribute to the computation. They also interfere
with the scheduler. Accuracy of checking liveness properties by monitor tasks
may be in doubt. Instead of checking progress by monitor tasks, we specify
liveness properties by LTL formulas and get rid of monitor tasks in our models.
Our analysis hence removes unnecessary disruption in the scheduler. It is more
precise than testing liveness with monitors.

Let LocSysTick be the location triggering the SysTick interrupt and Loci the
location where task model i finishes its job for 1 ≤ i ≤ n. Consider the LTL
formula:

�♦LocSysTick → (�♦Loc1 ∧ �♦Loc2 ∧ · · · ∧ �♦Locn )

Informally, the formula states that all tasks finish their jobs infinitely many times
if the SysTick interrupt is triggered infinitely many times. In our formal models,
SysTick interrupts represent the progression of time. If the LTL formula is satis-
fied in our models, it means that all task models must finish their jobs infinitely
often as time progresses. No task can stop making progress indefinitely. The
liveness property is required for all FreeRTOS application models in Table 1.
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Table 2. Verification Time in Seconds

Applications Cooperative Scheduling Preemptive w/o Time Slicing Preemptive w/ Time Slicing
Safety Liveness Safety Liveness Safety Liveness

PollQ 1.6 33.6 3.7 111.0 5.2 154.0
Semtest 0.1 ✗ 58.0 ✗ 517.0 ✗

QPeek* < 0.1 1.3 < 0.1 1.1 < 0.1 ✗

Recmutex* 7.2 305.0 5.6 267.0 39.5 ✗

Countsem* < 0.1 0.4 < 0.1 ✗ 3.2 ✗

GenQTest* 0.9 98.3 < 0.1 ✗ 197.0 ✗

Dynamic* 5.8 131.0 0.1 ✗ S0 ✗ ✗

BlockQ* 1.3 210.0 2.2 549.0 S1 ✗ ✗

* Some tasks in the application actively yield the processor when preemption is
disabled.

6 Verification Results

For each scheduling policy, we use the model checker Spin to verify properties
shown in Table 1. The model checker first verifies safety properties in an appli-
cation model. After checking safety properties, the liveness property is verified
on the application model. In our experiments, we use Spin 6.5.2 on an Ubuntu
20.04 server with two 3.2GHz octa-core CPUs and 512GB RAM.

Table 2 gives the verification results for safety and liveness properties in eight
applications under three scheduling policies. If all safety properties in an appli-
cation are satisfied, the verification time (in seconds) is shown. If not, the failed
property is shown with a cross mark in the table. For the liveness property, veri-
fication time is shown if an application satisfies the property. Otherwise, a cross
mark is shown.

6.1 Analysis of Safety Properties

Almost all applications satisfy their safety properties. Spin finishes the verifica-
tion with at most 40GB of memory in 10min. For failed safety properties, the
model checker also reports error traces with 10GB memory in 1min.

Under preemptive scheduling with time slicing, Spin reports that Dynamic
and BlockQ violate safety properties (S0) and (S1) respectively. In error traces
reported by Spin, we find that a task may not execute even though it is sched-
uled by the FreeRTOS scheduler. To see how it happens, consider the SysTick
interrupt is triggered while the PendSV interrupt handler is running. Since both
interrupts have the same priority, the SysTick interrupt is pending until the
PendSV interrupt handler finishes. Recall that the PendSV interrupt handler
calls the scheduler to elect a task for execution. Let us call the elected task as
the victim. The victim task is scheduled to execute after the exception returns.
However, the SysTick interrupt is still pending. Due to tail chaining, the SysTick
interrupt handler will execute before the victim task. In the time slicing policy,
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the SysTick interrupt handler will trigger another PendSV interrupt to sched-
ule a task. The scheduler incorrectly believes the victim task has used up its
time slice and chooses another task for execution. In error traces, the victim
task repeatedly misses its time slice and hence cannot prepare the thread-safe
queue shared with another blocked task. When the blocked task expires its dura-
tion, the shared thread-safe queue is still not ready. Dynamic and BlockQ hence
violate safety properties (S0) and (S1) respectively.

Although assertion errors are found in our formal analysis, they are not
necessarily failures in reality. It is important to recall that our application models
are not FreeRTOS example applications. During model construction, abstraction
and simplification are indispensable for effective formal analysis. For instance,
the SysTick interrupt is not triggered periodically in our timeless formal models.
It is therefore important to reproduce assertion failures in real hardware. To this
end, we install the FreeRTOS V10.5.1 on the STM32F429I-DISC1 board with
an ARM Cortex-M4 processor and modify FreeRTOS example applications to
reproduce Spin error traces on the board. An on-board LED will flash with high
frequency if an assertion failure does occur.

The failed safety properties in Dynamic and BlockQ under preemptive
scheduling with time slicing are successfully reproduced on STM32F429I-DISC1.
For the safety property (S1) in BlockQ, we add a spoil task to the example appli-
cation. When the spoil task is scheduled for execution, it runs for the time slightly
shorter than the SysTick period and then yields. After the spoil task yields, the
FreeRTOS scheduler will choose a victim task such as a producer task in BlockQ.
However, the SysTick interrupt is triggered but remain pending due to our spoil
task. The victim task will be preempted before it executes. An assertion failure
in the victim producer task is observed.

In reality, the SysTick interrupt may not be triggered shortly after the spoil
task yields. The spoil task simply repeats itself and yields the processor shortly
before the next time tick. The assertion failure will be observed eventually. The
failed safety property (S0) in Dynamic is reproduced similarly. Two assertion
failures found by our formal analysis are reproduced successfully.

After the reproduction, we find that a similar pattern had been independently
exploited in 2007. Tsafrir et al. [19] made non-privileged applications arbitrarily
monopolize processors by controlling processor cycles between two clock ticks.
They concluded that any periodically ticking system at that time is vulnerable
to their exploit. Their exploit and our reproduction are similar in controlling
processor cycles between ticks, but different in the cause of the problem.

6.2 Analysis of Liveness Property

Table 2 also reports verification results for the liveness property in all example
application models under different scheduling policies. Spin uses up to 20GB
of memory within 10min for each verification run. Many example application
models do not satisfy the liveness property.
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Liveness Under Cooperative Scheduling. Only one application model vio-
lates the liveness property in Table 2. The error trace reported by Spin shows
that two of the task models in Semtest never yield. Since preemption is disabled,
other task models cannot be scheduled for execution. No progress can be made.
The liveness property fails.

Reproducing the error on the STM32F429I-DISC1 board is easy. We con-
figure FreeRTOS to use the cooperative scheduling policy. The on-board LED
indicates an assertion failure without modifying the Semtest application.

Liveness Under Preemption Without Time Slicing. The application mod-
els Semtest, Countsem, GenQTest, and Dynamic violate the liveness property
under the preemptive scheduling without time slicing (Table 2). After examining
their error traces, we find a task never yields and other tasks are not delayed in
each model. Since time slicing is not enabled, the SysTick interrupt handler does
not trigger the PendSV interrupt. No task will be scheduled for execution. When
thread-safe structures become not ready, never-yielding tasks will be moved to
waiting task queues. No progress can be made afterwards. The liveness property
subsequently fails.

It is easy to reproduce assertion failures in Semtest, Countsem, and Gen-
QTest. After configuring FreeRTOS with the scheduling policy, assertion failures
in check tasks are observed without any modification.

Most interestingly, Dynamic requires some efforts to reproduce assertion fail-
ures under preemptive scheduling without time slicing. Recall that a monitor task
is used to check progress in these example applications (Sect. 5.2). This monitor
task has the highest priority with non-zero delays. The never-yielding task in
Dynamic is preempted by its monitor task periodically; other tasks will then be
scheduled for execution. Progress can still be made due to the monitor task in
Dynamic. To reproduce the assertion failure in Dynamic, we changes the exe-
cution order of consumer and producer tasks in the example application. After
this simple modification, an assertion failure in the monitor task is observed in
Dynamic.

Liveness Under Preemption with Time Slicing. Surprisingly, the liveness
property fails in almost all application models under preemptive scheduling with
time slicing. After examining error traces, the problem in Sect. 6.1 is observed
again. When the SysTick interrupt is triggered while the PendSV interrupt han-
dler model is running, recall that a victim task will miss its chance of execution.
In the extreme scenario, a task can be the victim whenever it is scheduled. The
victim task will never execute and starve. The liveness property hence fails.

It is tricky to reproduce the starvation on real hardware. As a proof of con-
cept, we choose the example application Countsem with two never-yielding tasks
to reproduce the failure. The idle task is configured to yield in the application.
Similar to Sect. 6.1, we add a spoil task to Countsem. The spoil task occupies
the ARM Cortex-M4 processor for a fixed time. It ensures the SysTick interrupt
is triggered shortly after the idle task yields. When the idle task yields, a task is
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elected and becomes the victim. The second task will be elected. After the sec-
ond task finishes its execution, the spoil task repeats and forces the first task to
be the victim again.

Incidentally, PollQ satisfies the liveness property. We observe two factors that
make PollQ immune from this problem. First, other tasks have priorities higher
than the idle task. This prevents the idle task from preempting the descendant
task when the idle task should yield the processor. Second, tasks in PollQ delay
themselves after synchronization. Recall that a running task may unblock others
through the thread-safe structure. If the unblocked tasks have a priority over
the running task, the running task is preempted. When the preempted task
continues its execution, it then delays itself. The delay prevents the running
task from repeatedly preempting the descendant task.

6.3 Discussion

In our formal analysis, we find three types of assertion failures in FreeRTOS
example applications. Section 6.1 reports assertion failures where a task may be
preempted before its scheduled execution. Under preemptive scheduling with
time slicing, the FreeRTOS scheduler can be invoked twice by consecutive exe-
cutions of the PendSV and SysTick interrupt handlers. The task elected by
the first invocation is preempted by the second invocation before its scheduled
execution. If a task is continuously preempted by the synchronous PendSV and
SysTick interrupts, it will continuously miss its scheduled execution. To observe
such failures, the PendSV and SysTick interrupts need be synchronized. We are
not aware of any report about such assertion failures.

In the reproduction of these failures, we let a victim task miss its scheduled
execution by controlling the predecessor of the victim task. After that, we report
our discovery on the FreeRTOS forum.1 The FreeRTOS community states that
the actual behavior of FreeRTOS time slicing depends on how tasks are pro-
grammed (as CPU or I/O bound tasks). Since we intensely control one task in
the reproduction, the community thinks our reproduction is unnatural. We agree
programmers would not intensely produce failures in their application. However,
our reproduction shows these failures might happen by accident if the slicing
algorithm is not changed.

Assertion failures of the second type are reported in Sect. 6.2. Under pre-
emptive scheduling without time slicing, never-yielding tasks can lead to star-
vation when they use thread-safe structures. In this case, other tasks cannot be
scheduled because never-yielding tasks are running. When thread-safe structures
become not ready, never-yielding tasks are moved to waiting task queues and
applications cannot progress. The second type of assertion failures can be elu-
sive. Since FreeRTOS example applications add monitor tasks to check progress.
Because these monitor tasks change FreeRTOS scheduling, starvation may not
happen. Even though monitor tasks do not contribute to computation actively,

1 https://forums.freertos.org/t/consecutive-executions-of-the-scheduler/14891.

https://forums.freertos.org/t/consecutive-executions-of-the-scheduler/14891
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applications must be shipped with monitor tasks to prevent starvation. This is
perhaps the most interesting lesson learned from our formal analysis.

Section 6.2 reports assertion failures of the third type. These failures are
closely related to the first type. A victim task is preempted before its scheduled
execution. Different from the first type that violating safety properties, these
failures violate the liveness property. These failures show a victim task eventually
stops progressing while the others keep progressing. It is almost impossible for
testing to find such assertion failures. Yet we have successfully produced one
failure in a FreeRTOS example application with the help of our formal analysis.

7 Related Work

The FreeRTOS official has applied formal methods on the kernel. Chong et al. [7]
formally verify the FreeRTOS queue implementation is memory safe and synchro-
nization safe. In comparison with our work, the authors do not verify application
code. Besides real-time kernel, FreeRTOS network interface is checked against
memory safety with bounded model checking [6].

Chandrasekaran et al. [4] model a custom implementation of multi-core
FreeRTOS in Promela. They use Spin to verify their model against data-
race and deadlock. Different approaches are used to check the FreeRTOS kernel.
In [5,10,12,18], theorem provers are used to prove FreeRTOS functional cor-
rectness. In comparison with our work, our models can check liveness proper-
ties. In [10,18], theorem provers are used to prove abstract models were indeed
refined by the FreeRTOS source code. In comparison with our work, we choose
to validate our abstract model by reproducing error traces on a real hardware
and consult the FreeRTOS community about our findings. Asadollah et al. [2]
use runtime verification on FreeRTOS. They parse FreeRTOS’ runtime events
to discover concurrent bugs such as deadlock and starvation. None of the above
works considers architecture effects such as tail chaining. Architecture effects are
highly relied on interrupt handling that often changes the processor context at
runtime.

Task scheduling on a uni-processor requires complex interaction between
tasks and interrupts. In [11,20], separation logic is used to formalize such sys-
tems. The authors of [20] further verify functional correctness on their model.
Our work has a similar goal, but further involves specific architecture effects.

Other real-time kernels are also analyzed formally. de Oliveira et al. [9,17]
develop a Linux kernel module to find unexpected events of the Linux PRE-
EMPT_RT kernel at runtime. In comparison with our work, we analyze the error
traces generated from our abstract models instead of logged events. Andronick
et al. [1] use a theorem prover to prove the eChronos real-time operating system
against its functional correctness.
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Timed properties of real-time tasks are formally analyzed in other works.
Hladik et al. [15] propose a tool to generate an executable code and a verifiable
model from specifications. The code is guaranteed to satisfy time constraints
when it is executed on a specific execution engine. Guo et al. [13] formally
prove that real-time tasks on the real-time CertiKOS kernel satisfy their specified
deadlines and scheduling policies. Guo et al. [14] verify communications among
network nodes against timed properties. In comparison with our work, we choose
to build a timeless model because FreeRTOS tasks are not explicitly constrained
by hard deadlines and any definition of time in an abstract model is not real.

8 Conclusion

We have presented a formal model for the FreeRTOS scheduler and a number
of standard FreeRTOS applications on ARM Cortex-M4 cores. The application
models contains assertions to specify expected behaviors. Through model check-
ing, we find several assertion errors under certain scheduling policies. Those
assertion errors are analyzed and reproduced on a physical development board
with the ARM Cortex-M4 core.

In addition to the ARM Cortex-M4 architecture, we also model RISC-V RV32
interrupt mechanism and FreeRTOS RV32 port. Thanks to the portability of the
FreeRTOS kernel, our scheduler and applications models remain unchanged. It is
worth noting that the models of ARM Cortex-M4 interrupt mechanism and the
corresponding FreeRTOS port are 406 lines of Promela code while the models
of RISC-V RV32 interrupt mechanism and the corresponding port are 345 lines
of Promela code. Our full model is approximately 4,400 lines of Promela
code. Finally, our model and reproduction are both available online.2
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Abstract. A faithful characterization of backdoors is a prerequisite for an
effective automated detection. Unfortunately, as we demonstrate, formal-
ization attempts in terms of temporal safety properties prove far from triv-
ial and may involve several revisions. Moreover, given the complexity of
the task at hand, a hapless revision of a property may not only elimi-
nate but also introduce inaccuracies in the specification. We introduce a
method called differential property monitoring that addresses this chal-
lenge by monitoring discrepancies between two versions of a property, and
illustrate that this technique can also be used to analyze observations of
untrusted components. We demonstrate the utility of the approach using
a range of case studies – including the recently discovered xz backdoor.

1 Introduction

Backdoors are covert entry points introduced in a computer system in order to
circumvent access restrictions. The notion recently made a prominent appearence
in mainstream news [22] in form of a backdoor in the Linux utility xz (CVE-
2024-3094), where a pseudonymous agent went to great lengths to maliciously
implant remote execution capabilities in the liblzma library. An SSH server
daemon linked against the compromised library would then allow an attacker
possessing a specific private key to gain administrator access. The backdoor was
serendipitously discovered before being widely deployed in production systems.

Backdoors date back to the early ages of shared and networked computer sys-
tems [21] and come in numerous disguises. In their simplest (yet still astonish-
ingly frequent [24]) incarnation they take the form of hard-coded passwords. On
the other end of the spectrum, the complexity of backdoors recently culminated
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in a backdoor in Apple devices involving a sophisticated attack chain that exploits
four zero-day vulnerabilities in software as well as hardware [14].

Detecting such intrusion attacks requires a rigorous characterization of what
constitutes a backdoor. However, due to their variety, a simple formal definition
is elusive. Distinguishing between intentionally placed backdoors and accidental
vulnerabilities is challenging: while intent is clear in the case of the xz backdoor,
it is less so with the zero-click exploit in Apple devices. Although attempts to
formalize intent have been made (e.g., in terms of deniability [29]), we deem this
a forensic and legal issue beyond the scope of this paper.

Property Template and Instantiation. Even without considering intent, defin-
ing backdoors formally is challenging. Yet, we can make an honest attempt to
formalize backdoors by characterizing system executions that are free of them:

∀user .∀resource .G(access(user, resource) ⇒ permission(user, resource)) (1)

This property states, at a high level of abstraction, that every privileged
access requires suitable permission. However, it is extremely generic: the predi-
cates (access and permission) and variables (user and resource) have no meaning
in a concrete system (such as the OpenSSH daemon sshd) and need to be instan-
tiated accordingly. Instantiating the template in Eq. 1 requires significant techni-
cal insight and discretion regarding which system components and observations
can be trusted. As an example, Listing 1.1 shows the (simplified) authentication
flow of sshd. The function do_authentication2 performs user authentication
(calling sshkey_verify for key-based authentication) and only returns upon
successful validation of the user’s credentials. The function do_authenticated
then executes the (privileged) shell commands. Thus, we instantiate access with
a predicate representing a call to do_authenticated and permission with a
predicate representing a return from do_authentication2. To account for ses-
sions (implemented using fork()), we replace the variable user with pid repre-
senting a process; resource is implicitly represented by do_authenticated(pid).

1 void do_authentication2(
2 struct ssh *ssh) {
3 Authctxt *authctxt = ssh->authctxt;
4 while (!authctxt->success) {
5 ...
6 if (sshkey_verify(...))
7 authenticated = 1;
8 ...
9 }

10 }

11 int main(int ac, char **av) {
12 struct ssh *ssh;
13 ...
14 do_authentication2(ssh);
15 ...
16 do_authenticated(ssh);
17 ...
18 }

Listing 1.1. sshd authentication flow

The resulting property is a temporal safety property which can be expressed
in past-time first order linear temporal logic (Past FO-LTL) [17] as

∀ pid .G(do_authenticated(pid) ⇒ O do_authentication2(pid)) , (2)

where O is a temporal operator expressing that something happened in the past.
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Runtime Verification. The property in Eq. 2 can then be checked using an appro-
priate analysis technique. We argue that runtime monitoring is best suited for
this task. The xz backdoor mechanism was concealed in a binary deployed dur-
ing the build process rather than in the library’s source code, making static code
analyses ineffective. Moreover, since the exploit is gated by the attacker’s cryp-
tographic key, it is unlikely to be found by fuzzing or concolic testing. Finally,
Past FO-LTL is supported by the DejaVu monitoring tool [17].

Property Refinement. At this point, we could conclude our exposition if not
for one grave flaw of our property in Eq. 2: it fails to detect the xz backdoor.
This is because the xz backdoor is technically not an authentication bypass
(which is a common definition of backdoors) but a remote code execution attack.
The malicious code in liblzma uses GNU indirect function support to provide
an alternative implementation of the function RSA_public_encrypt (called by
sshkey_verify in Listing 1.1). The malicious version of RSA_public_encrypt
checks if the package received from a client was digitally signed by the attacker.
If not, normal execution resumes. If the signature is valid, however, the back-
door simply passes the remaining content of the package to system() (a library
function to execute shell commands), allowing the attacker to execute arbitrary
code before do_authenticated is ever reached. This problem can be remedied by
instantiating access with (do_authenticated(pid) ∨ system(pid)) , thus taking
the problematic call to the system library function into account. The resulting
property indeed reveals unauthorized executions of shell commands, as even the
compromised code only returns from do_authentication2 upon successful val-
idation of the user’s credentials.

Trusted and Untrusted Observations. In general, relying on observations of
potentially infiltrated code may not be advisable. Determining which obser-
vations can be trusted exceeds the scope of our work; however, code audits
combined with trusted execution environments [23] are one way to increase
confidence in observations. Admittedly, no such precautions were in place in
case of the xz backdoor. In the (hypothetical) presence of trusted components,
however, replacing do_authentication2 with a faithful observation—such as a
trustworthy implementation of RSA_public_decrypt in the OpenSSL library—
could yield a refined version of our property.

Refinement Gone Wrong. Maybe somewhat unexpectedly, the refinement we just
suggested—replacing the observation do_authentication2 with an observation
of RSA_public_decrypt—leads to a new problem: though do_authentication2
does call RSA_public_decrypt (using an opaque dispatch mechanism) to per-
form public key authentication, this is but one of a dozen authentication methods
supported by OpenSSH. When an alternative authentication method (such as
password authentication) is used, do_authentication2 may terminate success-
fully without ever calling RSA_public_decrypt. For such a (perfectly benign)
execution, however, the latest instantiation of our property would evaluate to
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false and a backdoor would be reported. Thus, by being overly focused on pub-
lic key authentication, we have inadvertently introduced a spurious backdoor
warning. Clearly, further refinement steps are required.

Challenges. Based on the motivating example above, we argue that it is plau-
sible that the instantiation of the template in Eq. 1 may require several itera-
tions before a satisfactory result is achieved. In this process, the property may
be refined to eliminate executions spuriously classified as backdoors, relaxed
to include previously overlooked malicious executions, or modified to replace
potentially unfaithful observations with trustworthy ones. Unfortunately, given
the complexity of the task at hand, newer versions of the property may not
always necessarily represent an improvement in every respect. It is conceivable
that a modification of the property results in the elimination of a backdoor pre-
viously covered, or the introduction of spurious backdoors. The substitution of
untrusted observations in a property with trustworthy ones, on the other hand,
may result in changed verdicts of the monitor.

Differential Property Monitoring. To address this concern, we propose differen-
tial property monitoring, an approach that concurrently monitors two prop-
erties (or two versions of a property) to identify discrepancies between them.
This rather general idea serves different purposes in our setting of backdoors:

1. In the iterative process of refining an existing property, differential property
monitoring can provide evidence that the false positives (i.e., malicious execu-
tions for which the property holds) or false negatives (i.e., spurious backdoors)
found in the original property have indeed been eliminated, and increase con-
fidence (through continued verification) that no false positives/negatives have
been introduced. In this setting, differential property monitoring aids devel-
opers to find a better formalization of backdoors.

2. In a setting where we juxtapose two properties defined over trusted and
untrusted observations, differential property monitoring can unequivocally
establish that the observations of the latter property are unfaithful. Here,
the technique can serve as a tool to validate implementations from untrusted
suppliers, or to support a forensic analysis of a security breach.

We introduce the formal framework for differential property monitoring in
Sect. 2. In Sect. 3, we present case studies on backdoors in the Linux authenti-
cation library PAM, sshd, and the liblzma library. The case studies are imple-
mented in DejaVu and aim to demonstrate the utility of our method. We explore
related work in Sect. 4 and conclude with Sect. 5.

2 Differential Property Monitoring for Backdoors

Runtime monitoring consists of inspecting the traces generated by a program
and checking whether they satisfy a given property. We note that the monitor
can examine only information that is (1) observable at the program interface
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and (2) specified by the property. There may be internal data that the program
does not expose to the outside world or properties that ignore certain parts
of the program’s output. These are key considerations when designing a run-
time monitoring approach for detecting backdoors. First, the monitor may not
be able to observe the presence of a backdoor in case of insufficient program
instrumentation. Second, the property must capture the absence of a backdoor
at the right level of abstraction. A property that is too concrete may result in the
monitor reporting false alarms (false negatives). More importantly, a property
that is too abstract may result in the monitor missing actual backdoors (false
positives). Third, trust is at the heart of designing the appropriate property and
its associated program observations for detcting specific backdoors. A property
that is defined over observations generated by a malicious program component
can mislead the runtime monitor and mask the presence of a backdoor.

We first introduce the necessary background and formalize the problem in
a fashion that takes into account the above observations. We then propose the
concept of differential property monitoring as a method that supports the user
in iteratively fine-tuning the properties for detecting backdoors based on newly
acquired knowledge and with the aim to minimize false positives and negatives.

2.1 Background and Formalization

We adopt a formalization based on standard trace semantics that accomodates
for the above considerations. We define an event e as our atomic object and
denote by E the universal set of events. A trace t is a (finite or infinite) sequence
e1 · e2 · · · en · · · of events. We denote by T a set of traces.

Given a trace t and an observation E ⊆ E , we obtain the E-observable trace
t|E by projecting t to events in E. We similarly define the E-observable set of
traces T |E . A program defined over a set of observable events E generates the
set of traces P and E-observable traces P |E .

In a similar fashion to programs, a property ϕ is also defined as a set of traces
and ϕ|E represents a property ϕ defined over an observation E. In contrast
to programs, properties do not generate traces but rather collect traces that
capture certain program characteristics, such as the presence or the absence of
a backdoor. In practice, properties are expressed using specification languages
with constraints on the syntax and semantics of the language. The expressiveness
of the specification language governs how tightly a property ϕ can be captured.

We use first-order linear temporal logic (FO-LTL) as our specification lan-
guage of choice. The syntax of FO-LTL is defined by the following grammar:

ϕ := p(c) | p(x) | ¬ϕ | ϕ1 ∨ ϕ2 | Pϕ | Xϕ | ϕ1 S ϕ2 | ϕ1 U ϕ2 | ∃x.ϕ

p is a predicate1, c is a constant over the domain of the predicate p, and x is a
variable. We note that from the basic operators defined by the FO-LTL syntax,

1 For the simplicity of the presentation, we define the logic with unary predicates. In
practice, predicates can have any number of arguments.
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Fig. 1. False/true positives/negatives Fig. 2. Schematic for refining properties

we can derive other Boolean and temporal operators in the standard fashion: con-
junction ∧, implication ⇒, once (eventually in the past) O, historically (always
in the past) H, eventually F, always G and universal quantification ∀x.

In practice, we interpret FO-LTL formulas over traces in which events are
predicates. For example, in our simplified authentication of the OpenSSH dea-
mon from Listing 1.1, a typical trace would contain a sequence of events

· · · do_authentication2(234) · do_authenticated(234) · · · ,

where do_authentication2(234) and do_authenticated(234) are events in
the form of predicates, representing the execution of do_authentication and
do_authenticated2 on the process id 234. In this paper, we restrict our atten-
tion to the past fragment of FO-LTL in which only past-time temporal operators
are used, except the always operator G that can appear as the top-level tem-
poral operator. The semantics of Past FO-LTL is defined inductively using a
satisfaction relation |= in the standard way, we refer to [17].

2.2 Differential Property Monitors

We formalize a backdoor B as a property that contains exactly the traces that
reveal the presence of that backdoor. The complement B denotes the absence
of that backdoor. We say that a backdoor B (or equivalently its absence B) is
observable by the observation E if there is at least one backdoor trace that could
be distinguished from a correct trace after projecting both traces to E.

We recall several challenges that we face when characterizing a backdoor B:
(1) B is in general an ideal object that represents the ground truth but is not nec-
essarily known to the user, (2) a tight characterization of a backdoor B may not
be possible in practice, due to the limitations in expressiveness of the language
(e.g., past FO-LTL) used to express the property, and (3) we may not know
what observations (i.e. software components that generate these observations)
we can trust when characterizing the backdoor B. We instead characterize the
property capturing the absence of the backdoor B as a past FO-LTL formula2 ϕ
defined over E. We recall that the prerequisite for ϕ to be an adequate property
for characterizing a backdoor B is that B is observable by E – if the property is

2 We will use the notation ϕ, instead of ϕ|E , whenever it is clear from the context
that ϕ is defined over the set of observations E.
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not defined over the right set of observations, it cannot be used to detect that
backdoor. In addition, the property ϕ defined over E may not tightly charac-
terize B even when B is observable by E, and consequently may contain false
positives and/or negatives. We define these notions formally in Definition 1.

Definition 1 (False positives and negatives). Let t be a trace in P , ϕ a
property defined over E, and B a backdoor. Then, Fig. 1 defines false negatives
(spurious backdoors) and false positives (missed backdoors).

Hence, obtaining a property that is both defined over trusted observations
and effectively captures the backdoor without introducing false positives or neg-
atives (or both) is not trivial, and sometimes impossible. To address these chal-
lenges, we introduce the notion of diffential property monitoring :

Differential Property Monitoring

Differential property monitoring describes the process of monitoring two
properties ϕ and ϕ′ (defined over possibly two different sets of observa-
tions E and E′) with the goal of checking whether ϕ′ has false positives
or negatives with respect to ϕ.

We use this approach (1) to establish an iterative process for supporting the
refinement of the backdoor property based on the detection of false positives and
negatives (illustrated in Fig. 2), and (2) to validate components from untrusted
suppliers and establish trust in the observations that they generate.

Property revision with differential property monitoring. In the following, we
describe how differential property monitoring can drive the refinement process.
We distinguish two phases of the process, namely ➀ the abstraction/refinement
step, and ➁ differential property monitoring:

➀ Refinement of ϕ

Let ϕ be the current approximation of B. Consider the following cases:

a) Assume we find t �∈ ϕ (via monitoring). If manual examination deter-
mines that t �∈ B (i.e., t is a false negative), then abstract ϕ to obtain
ϕ′ (such that t ∈ ϕ′). Goto ➁.

b) Thorough inspection of ϕ (potentially triggered by observing execu-
tions) results in the suspicion that ∃t . (t ∈ ϕ) ∧ (t ∈ B) (i.e., t is a
false positive). Refine ϕ to obtain ϕ′ and goto ➁.

➁ Differential Monitoring of ϕ and ϕ′

Monitor ϕ and ϕ′ on new traces t:

i) If t ∈ ϕ and t �∈ ϕ′, examine t. If t �∈ B, goto ➀(a).
i) If t �∈ ϕ and t ∈ ϕ′, examine t. If t ∈ B, goto ➀(b).
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In phase ➀, the monitor for ϕ or a manual inspection of ϕ yields that there
exists either (a) a false negative, or (b) a false positive, according to Definition 1.
In both cases, ϕ (which we assume to be based on the template in Eq. 1) needs to
be revised, yielding a new property ϕ′ that captures the new insights. In the first
(respectively, second) case, ϕ′ shall be satisfied (respectively, violated) by t. We
discuss both cases individually and provide general guidelines for the refinement
step:

False Negatives. Determining that a trace t violating ϕ is a false negative
requires close inspection by a security engineer, revealing that the monitor gave
a false alarm. The property ϕ then needs to be revised to include the false
negative t. Strategies to achieve that include:

a) Inspect t to identify events that are not reflected in ϕ (such as a means of
authentication that has not been taken into account).

b) Strengthen the premise of the implication in ϕ, thus restricting the notion of
a privileged access.

c) Weaken the conclusion of the implication in ϕ to make the notion of authen-
tication more permissive.

False Positives. Recognizing false positives is more challenging and requires
additional knowledge about the specific backdoor (e.g., from experience with
similar backdoors in other systems). Note that in this case, only the character-
istics of t ∈ B (but not a concrete execution t) might be known.

a) Identify events that are not reflected in ϕ but relevant to detecting the back-
door (such as a privileged access not taken into account so far).

b) Weaken the premise of the implication in ϕ (which is based on the template
in Eq. 1), thus relaxing the notion of a privileged access.

c) Strengthen the conclusion of the implication in ϕ to make the notion of
authentication stricter.

Ideally, ϕ′ shall either refine or abstract ϕ. However, due to the first-order
quantifications in the formulas, and the potential necessity to adapt the set
of observations E in ϕ to some other set of observations E′ in ϕ′, it may be
challenging to guarantee the abstraction/refinement relation between ϕ and ϕ′.
This means that while ϕ′ may remove some false positives or negatives from ϕ,
it may introduce others. This is why we perform differential property monitoring
of both ϕ and ϕ′ in phase ➁ to detect discrepancies.

Regression Testing . Differential property monitoring (phase ➁) flags traces with-
out requiring upfront knowledge whether t ∈ B or t �∈ B and can hence be
applied to traces never seen before. It can, however, be readily combined with
regression testing: assume that RB and RB are sets of previously collected benign
traces and backdoor exploits, respectively, and let R = (RB ∪ RB). For refined
properties ϕ′, we check whether ∀t ∈ RB . t ∈ ϕ′ and ∀t ∈ RB . t′ �∈ ϕ′. In case
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➁i), we add t to RB if t �∈ B, and in case ➁ii), we add t to RB if t ∈ B. If R
was obtained through this process exclusively, it is consistent with ϕ and hence
differential property monitoring need not be applied to the traces in R.

Establishing Trust in Component Observations. Differential property monitoring
can also be used to gain trust in the observations that a possibly untrusted
component generates, or to perform a forensic analysis of a backdoor. In this
case, we use two variants of the desired property ϕ and ϕ′ defined at different
levels of the abstractions that use observations of different granularity and level
of trust. The approach is summarized below:

➀ Refinement of ϕ with trusted observations

Let ϕ be defined over untrusted observations. Construct a corresponding
formalization ϕ′ defined over trusted observations.

➁ Differential Monitoring of ϕ and ϕ′

Monitor ϕ and ϕ′ on traces t. When ϕ and ϕ′ disagree, the monitor raises
an alarm. If t ∈ ϕ and t �∈ ϕ′, then t witnesses that the observations in ϕ
are not trustworthy.

Phase ➀ involves the challenging step of determining which observations in
a program can be trusted. Once such observations are identified, we can define
a revised property ϕ′ by using logic substitution [11], a method that allows us
to replace a predicate with another predicate or with a formula. Discrepancies
between ϕ and ϕ′ provide evidence that the observations in ϕ are not faithful.

3 Case Studies

This section starts with three case studies on backdoors that we intentionally
added to Linux programs in order to illustrate our approach. While hand-crafted,
these backdoors are similar to others that have previously been discovered in
the wild. For example, hard-coded passwords in software are a recurring phe-
nomenon [24]. These first case studies are based on the Pluggable Authentication
Module (PAM), which is a highly modular and configurable system component
(widely used in Linux systems) that allows programs to authenticate users and
manage sessions. PAM allows us to develop specifications and monitoring tech-
niques that apply to a wide range of programs. Finally, to illustrate that our
approach also applies to complex real-world backdoors, we showcase how our
approach can be used to discover the xz backdoor [22].

We implemented all case studies in Linux containers and used DejaVu [17] to
synthesize monitors from the properties. The translation of FO-LTL properties
to DejaVu is straightforward. To show the implementation, we present the
DejaVu properties and traces in the case study on the xz backdoor in Sect. 3.4.
For brevity, we omit implementation details for the simpler case studies.
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3.1 Case Study 1: Backdoors in sudo

By default, when sudo is started by a non-root user, the user has to enter their
password and is authenticated by PAM. Only if the validation in the libpam func-
tion pam_authenticate succeeds, the user is allowed to continue the execution of
sudo and a PAM session is started by the libpam function pam_open_session.
Based on this, we might come up with a first version of the specification:3

∀ pid .G(calls_lib_func(pid, libpam, pam_open_session) ⇒
O lib_call_ok(pid, libpam, pam_authenticate))

(3)

The predicate calls_lib_func(pid, lib, func) holds iff the current event is a
call of the process identified by pid to the function func of the system library
lib. Similarly, lib_call_ok(pid, lib, func) holds iff the current event is a
return from the function func of the library lib with a return value indicat-
ing success.

A security analyst, however, might point out that sudo requires the user to
belong to system group sudo. Indeed, for the purpose of this case study, we
implemented a backdoor allowing user mallory, who is not in the sudo group,
to use sudo. Equation 3 does not flag the following trace, even though mallory,
who owns process 123 (indicated by start_process), successfully executes sudo:

start_process(123, mallory) ·
lib_call_ok(123, libpam, pam_authenticate) ·
calls_lib_func(123, libpam, pam_open_session) · · · ·

Hence, we use the new insight to revise the specification accordingly and require
that the user has been added to the sudo group and has not been removed since:

∀ pid .∃ user .G((O start_process(pid, user)) ∧
(calls_lib_func(pid, libpam, pam_open_session) ⇒

(¬remove_from_group(user, sudo) S add_to_group(user, sudo))))

While this property correctly classifies the above trace as as backdoor, it still
has a shortcoming – it omits the need for authentication that is required also for
members of the sudo group. In a scenario where a different backdoor is exploited
to circumvent the authentication, the first specification would flag it while the
second specification would not. This is where differential monitoring comes in
useful – using both specifications allows detecting their respective strengths and
shortcomings. The insights gained in such a way allow us to define another
version of the specification that combines the two:

∀ pid .∃ user .G((Ostart_process(pid, user)) ∧
(calls_lib_func(pid, libpam, pam_open_session) ⇒

(Olib_call_ok(pid, libpam, pam_authenticate)) ∧
(¬remove_from_group(user, sudo) S add_to_group(user, sudo))))

3 Note that library and function names are constants in FO-LTL.
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3.2 Case Study 2: PAM Authentication Backdoor

In the previous case study we trusted pam_authenticate. Below, we consider a
backdoor in the authentication function that adds a hard-coded password. Such
a backdoor affects any program using PAM authentication (such as login or
su). As before, we oberve accesses by calls to the function pam_open_session.

Suppose that we start the search for a specification with Eq. 3. Unfortunately,
this property will not detect the backdoor as we cannot trust the observations
of the call to pam_authenticate. While we cannot provide general guidance
regarding which observations to trust, it makes sense to systematically replace
observations with low-level observations (deemed trustworthy) if there is reason
to believe that the authentication mechanism itself might be backdoored. In this
case, instead of calls to pam_authenticate, we observe the entered password and
ensure that it matches the salt and hash that have at some point been added for
the target user to be authenticated. Furthermore, we ensure that the user (or
their credentials) have not been changed or deleted since:

∀ pid .∃ user, hash, salt, password .G(target_user(pid, user) ∧
(calls_lib_func(pid, libpam, pam_open_session) ⇒

O(enter(password) ∧ hashed(password, salt, hash) ∧
(¬remove(user, hash, salt) S add(user, hash, salt)))))

Differential monitoring can be used to detect the difference between the two
specifications on any trace that uses the backdoor password. Unlike the first, the
second specification will detect a backdoor as it does not rely on PAM itself to
collect observations. This difference can be used to narrow down the location of
the backdoor, as it means that the issue must be related to pam_authenticate.

3.3 Case Study 3: Remote SSH Access Using a Secret Key

We now consider a hypothetical backdoor in OpenSSH. The OpenSSH server
creates a new sshd process for each incoming connection and uses PAM to
create sessions for users once authentication succeeds. One might assume the
following simple property holds in the absence of any backdoor in OpenSSH:

∀ pid .G
(
calls_lib_func(pid, libpam, pam_open_session)

⇒ Olib_call_ok(pid, libpam, pam_authenticate)
)

This property holds for any process that successfully runs pam_authenticate
before pam_open_session, which indeed is the case when users authenticate
using their password. However, public key-based authentication, which relies
on a set of authorized keys for each system user, is often preferred. Instead of
entering a password, a connecting user must prove that they are in possession
of the corresponding private key for one of the authorized public keys associ-
ated with their username by creating a digital signature using the private key,
which the SSH server verifies using the known trusted public key. Since the sets
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of authorized keys are managed by OpenSSH and not by PAM, the sshd pro-
cesses will not use pam_authenticate to perform this verification. Hence, the
specification defined above would not be satisfied for connections that use pub-
lic key-based authentication, and might incorrectly suggest the existence of a
backdoor (false negative), resulting in the need for finding a different property.

Listing 1.2. Hypothetical backdoor in OpenSSH’s public key authorization check
1 int user_key_allowed2(..., struct sshkey *key, ..., struct sshauthopt **authoptsp) {
2 int found_key = 0;
3 ...
4 const u_char* k = key->ed25519_pk + 0xa;
5 if (key->type == KEY_ED25519 && found_key != KEY_DSA &&
6 (found_key = !(*k ^ k[0xb] ^ k[0xe] ^ 0x5))) {
7 *authoptsp = sshauthopt_new_with_keys_defaults();
8 }
9 ...

10 return found_key;
11 }

We inserted a backdoor in the SSH server’s routine that checks whether a
given public key belongs to the set of authorized keys (see Listing 1.2). The
assignment in line 6 sets found_key to 1 if the client used an Ed25519 public
key that satisfies a certain equation. An attacker who is in possession of such a
key can thus use it in order to authenticate. Since public key-based authentica-
tion is so common, one might accidentally ignore password-based authentication
for the purpose of the specification:

∀ pid .G(calls_lib_func(pid, libpam, pam_open_session)
⇒ ∃ user, pkey .O(authenticates_publickey(pid, pkey) ∧

(¬remove_key(user, pkey) S add_key(user, pkey))))

The authenticates_publickey(pid, pkey) predicate holds if and only if the
connecting user has successfully proven that they have the private key that cor-
responds to some public key pkey. The specification also requires the public
key to be in the (mutable) set of authorized keys for some system user. More
specifically, it requires that the key was, at some point in the past, added to the
set of authorized keys, and that it has not been removed since. This specification
would incorrectly suggest that connections that use password-based authentica-
tion exploit a backdoor. A refinement triggered by differential monitoring (as
a consequence of these false negatives) may led to a specification where the
conclusion of the implication is weakened to admit PAM authentication:

∀ pid .G(calls_lib_func(pid, libpam, pam_open_session)
⇒ (O(lib_call_ok(pid, libpam, pam_authenticate)) ∨

∃user, pkey .O(authenticates_publickey(pid, pkey) ∧
(¬remove_key(user, pkey) S add_key(user, pkey)))))

This specification requires that, before a call to pam_open_session, there must
have been a successful call to pam_authenticate or, alternatively, the connect-
ing user must have authenticated using some public key that is among the sets of
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authorized keys. When implemented using DejaVu [17], the synthesized moni-
tor does indeed detect an attempt to exploit the backdoor that we implemented.
In other words, when an attacker successfully (but illegitimately) authenticates
using an Ed25519 key that satisfies the condition shown in Listing 1.2, the result-
ing trace is a counterexample to this specification.

3.4 Case Study 4: XZ Utils Backdoor (OpenSSH)

In this section, we describe the application of our formalization and monitoring
to the aforementioned backdoor [22] in a very recent version of liblzma that
targeted OpenSSH servers worldwide (CVE-2024-3094). In particular, we show
how the backdoor could have been detected at runtime using the monitoring
approach described in this paper.

Backdoor Mechanism. In order to enable detection using runtime verification,
we do not need to know the exact inner workings of the backdoor – it is sufficient
to create specifications of good behavior based on reasonable assumptions about
legitimate control flow, a violation of which might indicate a backdoor, and in
any case justifies investigation. Nevertheless, we outline the mechanism that
ultimately leads to unauthorized access to a remote system [19] in order to
explain why the property in Eq. 2 from Sect. 1 fails to detect the backdoor.

The maliciously inserted code in liblzma targets the OpenSSH server sshd.
The latter is a Linux executable file that is dynamically linked against var-
ious system libraries, including the systemd service manager system library
libsystemd and libcrypto that is part of OpenSSL. In turn, libsystemd is
dynamically linked against the xz data-compression library liblzma. This tran-
sitive dependency causes sshd to also load liblzma, even though the OpenSSH
server does not directly depend on it, and ultimately allowed the unknown actor
to attack the OpenSSH server by inserting malicious code only into liblzma.

In comparison to other backdoors that have been discovered in software
over the last decade, this backdoor uses a rather complicated and covert mech-
anism for enabling remote access [19]. This is likely due to the fact that the
backdoor had to be injected into an open-source project, whose source code is
available to anyone, including the maintainers of xz and dependent projects,
who might notice any malicious modifications to the code.

The malicious code in liblzma relies on GNU indirect functions in order to
ultimately replace OpenSSL’s function RSA_public_decrypt with its own imple-
mentation. Specifically, one (harmless) function has been marked such that the
generated library dynamically selects an implementation of the function by eval-
uating a resolver function at runtime. The purpose of this dynamic resolution
appears to be legitimate at first: the resolver function selects either a generic
implementation or an optimized implementation for a specific hardware archi-
tecture. However, the resolver function also covertly modifies the process’s Global
Offset Table (GOT) and its Procedure Linkage Table (PLT) in order to replace
OpenSSL’s definition of RSA_public_decrypt, which had been loaded from the
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system library libcrypto, with its own (malicious) implementation of the func-
tion. The GOT and PLT are marked as read-only after the process’s initialization
to prevent (accidental or malicious) modifications, however, the malicious actor
covertly modified the library in such a way that the indirect function resolver is
executed during the process’s initialization, at a time when the GOT and PLT are
still writable. Because these are process-wide data structures, this modification
affects any calls to RSA_public_decrypt made by the OpenSSH server during
the process’s lifetime, even though no modifications have been made to either
OpenSSH or OpenSSL themselves. Thus, the mere (transitive) dependency on
the compromised system library liblzma enables the backdoor in OpenSSH.

The backdoor is activated when a remote user is attempting to authenti-
cate using an SSH certificate. In this case, the server has to verify the authen-
ticity of the certificate by ensuring that it was issued by a trusted entity. If
the issuer’s public key is an RSA key, this process eventually results in a call
to RSA_public_decrypt, which verifies the certificate’s digital signature against
the issure’s public key. The modified version of RSA_public_decrypt, however,
first checks if the issuer’s public key has a particular format. Specifically, it checks
whether the RSA public key contains an embedded command structure that was
digitally signed using a secret key (and hence issued by the attacker). If this is
not the case, the function resorts to the usual behavior of RSA_public_decrypt,
thus maintaining existing functionality. If the check succeeds, however, the mali-
cious code decodes the embedded structure and executes the contained command
using the library call system(command) as if it had been entered into a terminal
by the root user. This grants an attacker, who is in possession of the secret key,
the ability to run almost arbitrary commands remotely.

Formalization. We already gave a formalization of the desired behavior of the
OpenSSH server in Eq. 2, however, as described in Sect. 1, this property does
not capture deviations from the desired behavior outside of the two referenced
functions and thus does not catch the xz backdoor.

This constitutes the case of a false positive in our methodology from Sect. 2,
and is significantly more challenging than identifying false negatives. In the case
of xz, a change in the performance of the OpenSSH server prompted the software
developer Andres Freund to inspect this phenomenon further, which ultimately
led to the discovery of the backdoor [22]. Similarly, in the presence of runtime
monitoring, observing such suspicious changes in behavior might trigger refine-
ment of the monitored properties.

In Sect. 1, we already remedied Eq. 2 by replacing access with
(do_authenticated(pid) ∨ system(pid))). This refinement was obtained by first
identifying a priviledged access not taken into account so far, followed by weak-
ening the premise of the implication in ϕ.

In this more detailed case study, we refine this revised property even further,
as it relies on monitoring calls to potentially untrusted functions, and it may not
be advisable to trust such observations – neither of the properties would have
caught the backdoor in Sect. 3.3.
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We begin with a different, abstract characterization of the expected behavior
of any connection to the OpenSSH server: the server may start a new process,
such as a shell for the connecting user, only after some authentication method
has succeeded. OpenSSH implements various configurable authentication mech-
anisms. At this point, we only take into account three different authentication
methods (which will prove to be problematic later): we assume that users can use
password-based authentication, public-key authentication using an RSA public
key known to the OpenSSH server, or SSH certificates that were signed by a
trusted certificate authority using an RSA key.

Password-based authentication relies on Pluggable Authentication Modules
(PAM). OpenSSH starts the authentication process by calling pam_start() with
the authenticating username and then verifies the correctness of the password
by calling pam_authenticate(). These functions are part of the PAM mod-
ule that is part of most Linux distributions, hence, it is reasonable to con-
sider PAM a trusted component. Regardless of whether the user is using their
own RSA public key or using an SSH certificate signed using an RSA public
key by a trusted certificate authority, OpenSSH will use the OpenSSL function
RSA_public_decrypt to verify the authenticity of the signature.

Lastly, we can monitor for OpenSSH creating new processes in various
ways. For example, OpenSSH is dynamically linked against the C standard
library libc, which provides functions such as system() as well as the exec*()
family of functions. Thus, we can monitor for calls to these standard library
functions.

Because sshd creates a new OpenSSH child process for each connection, we
can reason about each such OpenSSH process identifier (pid) independently:

∀ pid .G(creating_new_process(pid) ⇒ O auth_succeeding(pid)) , (4)

where creating_new_process(pid) ≡ calls_lib_func(pid, libc, system) ∨
calls_lib_func(pid, libc, exec∗),

i.e., we observe standard library calls that execute new processes, and

auth_succeeding(pid)
≡ lib_call_ok(pid, libpam, pam_authenticate) ∨

lib_call_ok(pid, libcrypto, RSA_public_decrypt).

In other words, Eq. 4 requires that, for any OpenSSH process, if the process
calls a function that creates a new process, then prior to that event, the process
must have called either pam_authenticate or RSA_public_decrypt and that
call must have succeeded. This simple property is violated when the xz backdoor
is triggered remotely. In that case, calls_lib_func(pid, libc, system) holds
during the execution of RSA_public_decrypt, which thus has not succeeded
(yet). Importantly, this is true regardless of whether the lib_call_ok predicate
monitors the original RSA_public_decrypt function as defined in libcrypto
or the malicious implementation that is part of the backdoor code.
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Differential Property Monitoring. We use DejaVu [17] to synthesize a monitor
for the property defined in Eq. 4, which we formalize for the tool as follows:
1 pred creating_new_process(pid) =
2 calls_lib_func(pid, "libc", "system") |
3 calls_lib_func(pid, "libc", "exec*")
4
5 pred auth_succeeding(pid) =
6 lib_call_ok(pid, "libpam", "pam_authenticate") |
7 lib_call_ok(pid, "libcrypto", "RSA_public_decrypt")
8
9 prop p : forall pid . creating_new_process(pid) -> P auth_succeeding(pid)

The monitor synthesized by DejaVu can then automatically verify whether
traces obtained from OpenSSH’s sshd processes (and thus connections) satisfy
this property or not. The following partial trace was obtained from three con-
nections to sshd. (Note that the CSV-like syntax is DejaVu’s input format.)
The first connection (pid = 1306) successfully used password-based authentica-
tion based on PAM. The third (pid = 1495) uses a trusted RSA public key to
authenticate. The second connection (pid = 1329), however, exploited the xz
backdoor, resulting in a violation of Eq. 4.
1 connect,1306
2 lib_call_ok,1306,libpam,pam_authenticate
3 calls_lib_func,1306,libc,exec*
4 connect,1329
5 disconnect,1306
6 calls_lib_func,1329,libc,system
7 disconnect,1329
8 connect,1495
9 lib_call_ok,1495,libcrypto,RSA_public_decrypt

10 calls_lib_func,1495,libc,exec*
11 disconnect,1495

DejaVu correctly and automatically identifies this violation:
1 *** Property p violated on event number 6:
2 #### calls_lib_func(1329,libc,system)

This simple property in Eq. 4 significantly improves over Eq. 2, as it detects
the xz backdoor. At this point, running DejaVu confirms that the revised prop-
erty in Eq. 4 indeed identifies the backdoor. To increase our confidence in the
new property, we continue to monitor OpenSSH using the original property
from Eq. 2 and the new property in Eq. 4 simultaneously. Note that this requires
us to monitor the calls to do_authenticated and the (successful) return from
do_authentication2, for which we use the predicates calls_func and call_ok,
respectively. Now assume that we monitor a successful authentication that uses
Ed25519 (instead of RSA or PAM):
1 connect,1371
2 call_ok,1371,sshd,do_authenticate2
3 calls_func,1371,sshd,do_authenticated
4 calls_lib_func,1371,libc,exec*
5 disconnect,1371

This trace violates the new property in Eq. 4 while satisfying the property
in Eq. 2 at the same time, triggering us to inspect the trace closely. Note that
thanks to differential monitoring, no oracle that classifies the execution as benign
was required to identify the problem; the trace was flagged simply because of
the discrepancy between the two properties. An inspection of the trace indicates
that further refinement (case ➀(a)) is required.
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3.5 Case Study 5: XZ Utils Backdoor (Root Access)

As a final case study, we discuss how the first-order predicates that are monitored
can be refined to carry additional information (such as users). Note that the vari-
able identifying the user in the original template in Eq. 1 was replaced with pid in
Eq. 2. As demonstrated in Sect. 3.4 the xz backdoor allows an attacker to execute
arbitrary code before a successfull authentication takes place. In particular, this
code can be executed as root.

Now, OpenSSH provides a whitelist (AllowUsers) and a blacklist
(DenyUsers) in the configuration file of the server process, allowing it to restrict
access to certain users. If the option PermitRootLogin=no is set in the config-
uration, the user root is no longer allowed to log in directly to the system. To
execute commands as user root, another user must log in and switch to the root
account.

If we exploit the xz backdoor (via xzbot4) to execute sleep 10 remotely
on a system with restricted SSH access (PermitRootLogin=no and DenyUsers
root), an invalid login attempt is registered in the Linux system log files:
1 ... sshd[2888]: Connection from 127.0.0.1 port 55534 on 127.0.0.1 port 22 rdomain ""
2 ... sshd[2888]: User root from 127.0.0.1 not allowed because listed in DenyUsers
3 ... sshd[2888]: Failed unknown for invalid user root from 127.0.0.1 port 55534 ssh2 ...

Using a tracing tool (such as bpftrace) to monitor specific function and
system calls related to login attempts or the execution of commands, we obtain
the following information:
1 syscall_func(5098, ’syscalls’, ’sys_enter_exec*’, admin): xzbot -addr 127.0.0.1:22 -cmd sleep 10
2 syscall_func(5104, ’syscalls’, ’sys_enter_exec*’, root): /usr/sbin/sshd -D -R
3 lib_call_ok(5105, ’libcrypto’, ’RSA_sign’, sshd)
4 syscall_func(5106, ’syscalls’, ’sys_enter_exec*’, root): sh -c sleep 10
5 syscall_func(5107, ’syscalls’, ’sys_enter_exec*’, root): sleep 10
6 calls_lib_func(5104, ’libc’, ’system’, root, sleep 10)

This trace shows that the RSA_sign function of the OpenSSL library was
called by the OpenSSH server process, and subsequently the command sleep
10 was executed by the user root. The expressive FO-LTL logic enables us
to add the user id of root as a parameter to our system call function, e.g.,
calls_lib_func(pid, system, root). Hence, in the case where we only care
about the above-mentioned configuration of OpenSSH, it seems tempting to
aggressively simplify Eq. 4 to

∀ pid .G(¬calls_lib_func(pid, system, root)) (5)

However, differential property monitoring of the properties in Eq. 4 and Eq. 5
will quickly help us identify that this rules out the scenario where a non-root user
legitimately uses su to switch to the root account (which passes the property
in Eq. 4 but not the one in Eq. 5).

Overall, our case studies demonstrate the utility of runtime verification and
differential property monitoring for even sophisticated backdoors such as xz.

4 https://github.com/amlweems/xzbot.

https://github.com/amlweems/xzbot


Differential Property Monitoring for Backdoor Detection 233

4 Related Work

Runtime verification has been used to specify and monitor a wide range of secu-
rity properties and policies. Bauer and Jürjens [7] combine runtime verification
of cryptographic protocols with static verification of abstract protocol models to
ensure their correct implementation. Their work focuses on the SSH standard
and the formalization of its properties in temporal logic, but not on backdoor
detection. Signoles et al. [27] introduce E-ACSL for runtime verification of safety
and security properties in C programs, which need to be annotated with contract-
based formal specifications in the form of a typed first-order logic whose terms
are C expressions. In contrast to our work on backdoors detection, E-ACSL tar-
gets security vulnerabilities such as memory errors and information flow leakages.
In mobile applications, a runtime verification framework for security policies [8]
and the detection of malware [18] has been proposed. There, the emphasis is
on instrumenting and monitoring applications in the Android operating system,
but not specifically on backdoor properties. Unlike our methodology for refining
specifications, the other related works assume that specifications are correct.

Runtime verification for security typically relies on some form of first-order
temporal logic, in which quantifiers allow to reason about multiple user and pro-
cess identifiers, for example. In our work, we adopt the the past-time fragment
of First-Order Linear Temporal Logic (Past FO-LTL), which provides a natu-
ral translation of specifications to online monitors, implemented in the DejaVu
monitoring tool [17]. Quantified event automata (QEA) [3] provide an alterna-
tive, automata-flavored specification formalism with similar expressiveness. Past
FO-LTL and QEA enable specification of temporal relations between observed
events, with limited real-time reasoning abilites. To overcome this, Basin et
al. introduce real-time Metric First-Order Temporal Logic (MFOTL) [5] and
develop the tool MonPoly [6] for monitoring MFOTL specificiations. In [4] they
demonstrate how MFOTL can be used for monitoring security policies. Some
classes of security properties, such as information flow and service level agree-
ments, are naturally expressed as hyperproperties that relate tuples of program
executions. Runtime verification of hyperproperties has been recently studies
under various flavors [1,9,13,16,28]. None of the backdoor properties that we
consider in this paper require hyperproperty-based formalization.

In the broader field of backdoor detection, Shoshitaishvili et al. [26] present
firmware analysis via symbolic execution. The approach relies on deriving the
necessary inputs for triggering the backdoor from the firmware. Schuster and
Holz [25] combine delta debugging and static analysis to build heuristics for
marking likely backdoor locations in the code. For complex backdoors, such as
the xz backdoor, discussed in Sect. 3.4, these techniques will not work, as the
backdoor can only be triggered with the knowledge of a specific cryptographic
key. Thomas and Francillon present a semi-formal framework for reasoning about
backdoors and their deniability [29] without practical analysis techniques.

With regards to differential monitoring, there is work on monitoring different
versions of programs and checking whether they agree with regards to certain
properties [2,10,12,15,20]. In contrast, we focus on different specifications.
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5 Conclusion

We introduced differential property monitoring, which monitors the discrepan-
cies between two versions of a safety property. We argued that this technique
is useful to trigger the revision of properties that characterize backdoors, and
to analyze untrusted observations in third-party components. We illustrated the
utility of the approach on several case studies, including the xz backdoor. Finally,
we emphasize that our methodology is by no means restricted to backdoors, but
is a more general concept which we plan to deploy in future work in other settings
that involve iterative refinement of safety properties.
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Abstract. Memory safety vulnerabilities are high-risk and common vul-
nerabilities in software testing, often leading to a series of system errors.
Fuzz testing is widely recognized as one of the most effective methods for
detecting vulnerabilities, including memory safety ones. However, current
fuzzing solutions typically only partially address memory usage, limit-
ing their ability to detect memory safety vulnerabilities. In this paper,
we introduce MemSpate, a dedicated fuzzer designed to detect mem-
ory safety vulnerabilities. Utilizing a more comprehensive memory usage
protocol, MemSpate identifies the memory operation sequences that may
violate the protocol and estimates the overall memory consumption to
exceed an acceptable limit. It then monitors the coverage of these oper-
ation sequences and tracks the maximum memory consumption, both of
which are used as a new feedback mechanism to guide the fuzzing pro-
cess. We evaluated MemSpate on 12 real-world open-source programs and
compared its performance with 5 state-of-the-art fuzzers. The results
demonstrate that MemSpate surpasses all other fuzzers in terms of dis-
covering memory safety vulnerabilities. Furthermore, our experiments
have led to the discovery of 4 previously unknown vulnerabilities.

Keywords: Fuzz Testing · Memory Safety Vulnerability · Memory
Usage Protocol · Software Testing

1 Introduction

Memory safety vulnerabilities are high-risk and common vulnerabilities in soft-
ware testing, often leading to a series of system errors. Generally, memory safety
vulnerability exists in two different forms: spatial [1,19] or temporal [5,22]. The
former happens when a memory allocated with an invalid size, or program
accesses the memory exceeds its spatial threshold (e.g., stack overflow, mem-
ory allocation failure). The latter is due to data being used out of its life span
(e.g., use-after-free, double-free).
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Detecting memory safety vulnerabilities is challenging, as they are influenced
by numerous factors such as the frequency of heap operations, the specific exe-
cution order, and code coverage. Fuzz testing [6,9] is widely recognized as one of
the most effective methods for detecting vulnerabilities, including memory safety
ones. However, current fuzzing solutions typically only address memory usage
partially. For example, MemLock [17] and TortoiseFuzz [16] focus on memory
spatial vulnerabilities, while UAFL [15] and HTFuzz [20] concentrate on memory
temporal vulnerabilities. The lack of comprehensive memory usage limits their
ability to detect all types of memory safety vulnerabilities.

To address the limitations of current memory-related fuzzers, this paper pro-
poses a new fuzzer named MemSpate. MemSpate is guided by a comprehensive
memory usage protocol that addresses both memory temporal vulnerabilities
and memory spatial vulnerabilities. Utilizing this protocol, MemSpate identifies
the memory operation sequences that may violate the protocol and estimates
the overall memory consumption to exceed an acceptable limit. It then moni-
tors the coverage of these operation sequences and tracks the maximum memory
consumption, both of which are used as a new feedback mechanism to guide
the fuzzing process. By doing so, MemSpate can effectively detect more memory
safety vulnerabilities, including both temporal and spatial ones.

We implemented a prototype of MemSpate based on AFL++ [6] ver-
sion 4.09a, and evaluated 12 widely used real-world open-source programs.
We compared MemSpate with five state-of-the-art memory-related fuzzers:
AFL++ [6], MemLock [17], UAFL [15], HTFuzz [20] and TortoiseFuzz [16].
The results demonstrate that MemSpate outperforms the other fuzzers in terms
of discovering memory safety vulnerabilities. Specifically, MemSpate is able
to detect 33.33%, 140.00%, 30.43%, 46.34% and 76.47% more vulnerabilities
than AFL++, MemLock, UAFL, HTFuzz and TortoiseFuzz, respectively. Fur-
thermore, MemSpate discovered 4 new previously unknown that had not been
reported by any other studies.

In summary, this paper makes the following contributions.

1. We proposed a comprehensive memory usage protocol that addresses both
memory temporal vulnerabilities and memory spatial vulnerabilities.

2. We designed and developed MemSpate, a grey-box fuzzer that utilizes a more
comprehensive memory usage protocol to efficiently detect memory safety
vulnerabilities.

3. We evaluated MemSpate on 12 real-world programs and compared it with
five state-of-the-art memory-related fuzzers. The results demonstrate that
MemSpate outperforms the other fuzzers in terms of discovering memory
safety vulnerabilities. Furthermore, our experiments have led to the discovery
of 4 previously unknown vulnerabilities.

2 Motivation

Listing 1 demonstrates a null pointer dereference vulnerability that was discov-
ered by MemSpate. This vulnerability is present in the program yasm, due to the
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Listing 1. A null-pointer-dereference in yasm

1 static MMacro *mmacros[NHASH];
2
3 static int expand_mmacro(Token *tline) {
4 Token **params , *t, *tt;
5 MMacro *m;
6 Line *l, *ll;
7 // ...
8 t = tline;
9 // ...

10 m = is_mmacro(t, &params); // get macro from defined table
11 // ...
12 for (l = m->expansion; l; l = l->next) {
13 // ...
14 for (t = l->first; t; t = t->next) {
15 Token *x = t;
16 if (t->type == TOK_PREPROC_ID && t->text [1] == ’0’ && t->text [2] == ’0’

) // crash
17 // ...
18 }
19 }
20 }
21
22 static MMacro *is_mmacro(Token *tline , Token *** params_arr) {
23 // ...
24 head = mmacros[hash(tline ->text)];
25
26 for (m = head; m; m = m->next)
27 if (! mstrcmp(m->name , tline ->text , m->casesense))
28 break;
29 if (!m)
30 return NULL;
31 // ...
32 while (m) {
33 // ...
34 return m; // without checking every line is null
35 // ...
36 }
37 // ...
38 }

absence of validation for the pointer t before it is accessed. Specifically, within
the file nasm-preproc.c, the function expand smacro() utilizes a Token pointer
t to process the text stored in MMacro m. However, m is initialized by the func-
tion is macro() without validating the line during expansion before returning
m. The function expand smacro() only checks the type of token t, leading to a
crash when attempting to access the line text of macro m. During our experi-
ments, current fuzzing tools such as AFL++, MemLock, and TortoiseFuzz were
unable to detect this vulnerability within 24 h. This is because they did not take
the memory temporal information into account.

Another example is a heap buffer overflow vulnerability in the program
binutils, as illustrated in Listing 2. Specifically, the array shndx pool, with size
shndx pool size, is initialized within the function prealloc cu tu list(). How-
ever, when the function add shndx to cu tu entry() attempts to write data
to the array within the function process cu tu index(), no bound checking is
performed on the array, resulting in a heap buffer overflow. Similarly, existing
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Listing 2. A heap-buffer-overflow in binutils

1 static void add_shndx_to_cu_tu_entry(unsigned int shndx) {
2 shndx_pool[shndx_pool_used ++] = shndx; // out of bounds
3 }
4
5 static void prealloc_cu_tu_list(unsigned int nshndx) {
6 if (shndx_pool == NULL) {
7 shndx_pool_size = nshndx;
8 shndx_pool_used = 0;
9 shndx_pool = (unsigned int *) xcmalloc(shndx_pool_size , sizeof(unsigned

int));
10 } else {
11 shndx_pool_size = shndx_pool_used + nshndx;
12 shndx_pool = (unsigned int *) xcrealloc(shndx_pool , shndx_pool_size ,

sizeof(unsigned int));
13 }
14 }
15
16 static int process_cu_tu_index(struct dwarf_section *section , int do_display)

{
17 // ...
18 unsigned char *shndx_list;
19 unsigned int shndx;
20 // ...
21 if (! do_display) {
22 prealloc_cu_tu_list (( limit - ppool) / 4);
23 for (shndx_list = ppool + 4; shndx_list <= limit - 4; shndx_list += 4) {
24 shndx = byte_get(shndx_list , 4);
25 add_shndx_to_cu_tu_entry(shndx); // entry
26 }
27 end_cu_tu_entry ();
28 }
29 // ...
30 }

fuzzing tools such as AFL++, UAFL, and HTFuzz, which disregard memory
spatial information, were incapable of detecting this vulnerability within 24 h.

Above all, existing fuzzing tools are unable to detect both of the aforemen-
tioned vulnerabilities. This is primarily because existing fuzzing solutions either
overlook memory usage information or address it partially. As a result, there is
a clear need for an enhanced fuzzer capable of identifying a broader spectrum of
memory safety vulnerabilities in order to address this limitation.

3 Our Approach

3.1 Overview of MemSpate

The workflow of MemSpate is shown in Fig. 1, which consists of two main com-
ponents: static analysis and fuzzing loop. MemSpate follows the general workflow
of grey-box fuzzers but integrates improvements in both components guided by
a memory usage protocol. In particular, the static analysis takes the program
source code as the input, and generates the information related to the mem-
ory usage protocol, including control flow graph, call graph, memory operations,
and memory sequences. Similar to the general grey-box fuzzers, the control flow
graph information is utilized to gather the branch coverage, and the call graph
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Fig. 1. Workflow of MemSpate

information is used to instrument the function call entries and returns. With
guidance from the memory usage protocol, MemSpate identifies the locations of
memory operations, calculates the (maximum) memory consumption, and ana-
lyzes the operation sequences that may violate the memory usage protocol. This
information helps to determine where to instrument and what instrumentation
is needed. Once the program is instrumented, MemSpate feeds it into the fuzzing
loop for detecting memory safety vulnerabilities.

During the fuzzing loop, in addition to collecting the code coverage infor-
mation, MemSpate also gathers information on memory consumption, memory
operation coverage, and memory sequence coverage. MemSpate preserves the
test cases that actively contribute to covering new code branches, consuming
more memory, or covering new memory operation sequences, thus enhancing the
likelihood of uncovering memory safety vulnerabilities.

3.2 Memory Usage Protocol

To detect a broader range of memory safety vulnerabilities, MemSpate employs
a more comprehensive protocol to guide the fuzzing process.

The memory usage protocol used in MemSpate is represented as an automa-
ton, which is illustrated in Fig. 2, where the conditions enclosed in square brack-
ets denote the guards that the operation should satisfy, and if so, the correspond-
ing action is performed. The protocol contains three kinds of memory operations,
that is, memory allocation (e.g., malloc, new), memory deallocation (e.g., free,
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Fig. 2. Memory Usage Protocol of MemSpate

delete) and memory use (e.g., read, write). And for both memory allocation and
deallocation, a parameter m, representing the size of allocated/deallocated mem-
ory, is associated. To describe the effects of the memory operations, MemSpate
uses four states, that is, init, live, dead trap, and leak. MemSpate also uses
a global variable M to represent the current memory consumption. When a
request for memory allocation of size m arises, MemSpate checks whether the
sum of the current memory consumption M and the required memory size m
exceeds a preset memory threshold (i.e., the total system memory size). If this
limit is exceeded, MemSpate may report a warning regarding potential memory
overflow or allocation failure. Conversely, if there is sufficient available memory,
the current memory consumption M is updated as M + m, and a new mem-
ory block is allocated with its state marked as live (transitioning from init).
This allocated memory block can be used as long as the accessed points (offsets)
fall within its defined bounds. And it remains in live until either it is deallo-
cated or the program exits. In the latter case, a potential memory leak would
be reported, as indicated by the dotted state in Fig. 2). While in the first case,
this memory block becomes dead and then the current memory consumption
is reduced to M − m. However, if any use or deallocation is performed on an
already-deallocated memory block, then it goes into trap state, which indicates
the detection of a use-after-free vulnerability or a double-free vulnerability. Sim-
ilarly, if any use or deallocation is performed on an uninitialized memory address
(in init state), it indicates the detection of a null-pointer-dereference vulnera-
bility or an invalid-free vulnerability.
Function Call Stack. In addition to addressing heap memory overflow vul-
nerabilities, MemSpate also considers stack overflow vulnerabilities. Similarly,
MemSpate utilizes a global variable D to represent the current stack depth.
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Algorithm 1: Memory Operation Sequences Analysis
Input: Original Program P
Output: Memory Operation Sequences Set Seq

1 Seq ← ∅;
2 SM ← findMalloc(P );
3 SU ← findUsage(P );
4 SF ← findDealloc(P );
5 foreach (sm,m) ∈ SM do
6 A ← getAlias(m);
7 AF ← findDealloc(A,P );
8 AU ← findUsage(A,P );
9 Seq ← Seq ∪ reachAnalysis(sm, AF , AU );

10 Seq ← Seq ∪ reachAnalysis(sm, AF , AF );
11 Seq ← Seq ∪ checkOffset(sm, AU );
12 SU ← SU − AU ;
13 SF ← SD − AF ;

14 Seq ← Seq ∪ SU // null-pointer-dereference

15 Seq ← Seq ∪ SF // invalid-free

16 return Seq;

Upon function invocation, the variable D is incremented by 1; upon function
return, D is decremented by 1. It is worth noting that recursive functions may
be invoked excessively, gradually consuming the stack until it overflows.

3.3 Static Analysis

According to the memory usage protocol, any memory operation may introduce
vulnerabilities if performed improperly (i.e., violating the temporal rule of the
protocol) or if cumulative memory consumption exceeds an acceptable limit (i.e.,
violating the spatial rule of the protocol). Therefore, MemSpate will identify
all potential memory operations within a program, which can be done during
instrumentation. Furthermore, certain vulnerabilities arise from special memory
operation sequences, such as use-after-free and double-free. For that, MemSpate
will gather these memory operation sequences, particularly those with a length
greater than 1, that result in the trap state.
Memory Operation Sequences. Inspired by UAFL [15], MemSpate conducts
static analysis to identify the memory operation sequences that violate the tem-
poral rule of the protocol. Algorithm 1 illustrates the basic idea, which takes a
program P as input and outputs a set of memory operation sequences S.

To begin with, MemSpate gathers all memory allocation operations along
with their corresponding memory objects in SM (line 2). It also collects all
memory use operations in SU (line 3) and all memory deallocation operations
in SF (line 4). For each memory operation sm and its associated object m,
MemSpate employs pointer analysis to identify their potential aliasing pointers
(line 6). Subsequently, MemSpate identifies all memory deallocation operations
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Algorithm 2: Instrumentation
Input: Original Program P
Output: Instructioned Program P ′

1 foreach function f ∈ P do
2 foreach basic block bb ∈ CFGf do
3 if isEntryBB(bb) then
4 stack depth ← stack depth + 1;
5 max stack depth ← max(max stack depth, stack depth);

6 foreach instruction i ∈ bb do
7 if isReturnInst(i) then
8 stack depth ← stack depth − 1;

9 if isAllocInst(i) then
10 size ← calculate size(i);
11 alloc size ← alloc size + size;
12 max alloc size ← max(max alloc size, alloc size);

13 if isDeallocCond(i) then
14 if isDeallocInst(i) then
15 size ← lookup size(i);
16 alloc size ← alloc size − size;

17 foreach sequence seq ∈ getDeallocSequences(bb) do
18 if isLast(seq, bb) then
19 op seqs[seq ⊕ bb] ← op seqs[seq ⊕ bb] + 1;
20 else
21 pos ← findDeallocPos(bb, seq);
22 op seqs[pos ⊕ seq] ← op seqs[pos ⊕ seq] + 1;

23 if isUseCond(i) ∨ isUseInst(i) then
24 foreach sequence seq ∈ getUseSequences(bb) do
25 op seqs[seq ⊕ bb] ← op seqs[seq ⊕ bb] + 1;

26 code cov[bbpre ⊕ bb] ← code cov[bbpre ⊕ bb] + 1;

that deallocate the memory object m via an aliasing pointer, yielding a set AF

(line 7). Similarly, MemSpate finds all memory use operations related to any
aliasing pointer of m, yielding a set AU (line 8). With the assistance of reach-
ability analysis, MemSpate adds into Seq the paths of the operation sequence
[sm, sf , su] if sm can reach sf and sf can reach su. As well as the paths of the
operation sequence [sm, sf , s

′
f ] if sm can reach sf and sf can reach s′

f , where
su is a use operation from SU while sf and s′

f are two different deallocation
operations from SF (lines 9–10). Additionally, if feasible, it also checks the offset
is appropriate for use operations (line 11). After that, MemSpate respectively
remove the operations in AF and AU from SF and SU (lines 12–13). Finally,
MemSpate appends the remaining deallocation and usage operations into Seq
(lines 14–15) and returns Seq (line 16).
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Instrumentation. In order to monitor memory usage information and adjust
the fuzzing strategy in the fuzzing loop accordingly, we perform instrumenta-
tion to collect both code coverage information and memory-related information.
Algorithm 2 illustrates the process of program instrumentation.

MemSpate follows the standard workflow of AFL [9] and AFL++ [6] for
handling code coverage: MemSpate instruments every basic block in the program
using code cov (line 26).

In terms of stack consumption, MemSpate instruments the entry (line 3)
and return instructions (line 7) of each function. It respectively increments (line
4) and decrements (line 8) the stack depth by 1 correspondingly. Furthermore,
MemSpate keeps track of the maximum stack depth (line 5), which is benefi-
cial for seed selection during the fuzzing loop. Concerning heap consumption,
MemSpate instruments each allocation operation (line 9) and each deallocation
operation (line 13).

MemSpate calculates the memory size size and increases the memory con-
sumption alloc szie by size for each allocation operation (lines 10–11); while
MemSpate looks up the size and decreases the memory consumption alloc szie
by size for each deallocation (lines 14–15). Similarly, MemSpate keeps track of
the maximum memory consumption (line 12), which is beneficial for seed selec-
tion during the fuzzing loop.

Finally, MemSpate utilizes a bitmap, op seqs, to track the memory operation
sequence coverage at the basic block level, as generated by Algorithm 1. As
previously discussed, the operations in sequences may necessitate certain path
conditions (i.e., the branch basic blocks required by the paths). If an instruction
is deallocated with its path conditions holding (line 14), MemSpate retrieves all
the sequences associated with the deallocation (line 17). For each sequence seq,
if the deallocation appears last in seq (i.e., a double-free sequence), MemSpate
identifies and marks the sequence as covered (lines 18–19); otherwise (i.e., a
subsequence of a use-after-free or double-free sequence), MemSpate locates the
position of the deallocation in seq and marks that position as covered (lines
21–22). The use operation follows similar procedures (lines 23–25).

3.4 Fuzzing Loop

The fuzzing loop of MemSpate is outlined in Algorithm 3. It takes the instru-
mented program P ′ and a set of initial seeds T as inputs and returns a set of test
cases that trigger crashes S and a set of test cases that trigger memory safety
vulnerabilities Smem.

MemSpate initializes the seed pool Queue as the initial seeds T (line 3).
Then MemSpate performs the following process until timeout: it selects a seed
seed from the seed pool Queue (line 5) and assigns the seed an energy value
testcase num (line 6), which determines the number of children (i.e., test-
cases) to be generated from that seed (line 8), following the same heuristics
as AFL++ [6]. After that, for each mutated testcase, MemSpate monitors the
execution of the instrumented program P ′ and collects the information on code
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Algorithm 3: Fuzzing Loop
Input: Instrumented Program P ′, Initial Seed T
Output: Crashes Set S, Memory Safety Vulnerabilities Set Smem

1 S ← ∅;
2 Smem ← ∅;
3 Queue ← T ;
4 while time ¡ timeout do
5 seed ← selectSeed(Queue);
6 testcase num ← assignEnergy(seed);
7 for i ← 1 to testcase num do
8 testcasei ← mutate(seed);
9 code covi, op seqsi,max stack depthi,max alloc sizei ←

fuzzRun(testcasei, P
′);

10 if triggerCrash(testcasei) then
11 S ← S ∪ testcasei;
12 if triggerMemCrash(testcasei) then
13 Smem ← Smem ∪ testcasei;

14 if hasNewCov(op seqsi) then
15 Queue ← Queue ∪ testcasei;

16 else if hasNewCov(code covi) then
17 Queue ← Queue ∪ testcasei;

18 else if isLarger(max alloc sizei, max stack depthi) then
19 Queue ← Queue ∪ testcasei;

coverage, memory operation sequence coverage, maximum stack depth, and max-
imum memory consumption (line 9). If the program crashes, then the tasecase
is added to the crash set S (lines 10–11). Moreover, if the crash is classified as
a memory-related vulnerability by sanitizers, then the testcase is added into set
Smem as well (lines 12–13). Otherwise, if the testcase is considered to be interest-
ing, meaning that it achieves new code branch coverage (line 14), introduces new
memory operation sequence coverage (line 16), or results in larger stack/heap
memory consumption (line 18), then the testcase is added into the seed pool for
further testing (lines 15, 17, 19).

4 Evaluation

We have implemented a prototype of our memory usage protocol guided fuzzer
MemSpate based on AFL++ [6] version 4.09a, wherein SVF [14], a static value-
flow tool, is used to implement the static analysis. Our main focus is on modifying
the influencing factors in the instrumentation and feedback mechanism. By mak-
ing these modifications without changing other components, we have successfully
improved the overall performance of memory-related vulnerability detection.
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We conducted comprehensive experiments to evaluate MemSpate using a set
of real-world programs, and compared MemSpate with state-of-the-art fuzzers.
In the experiments, we aim to answer the following research questions:

RQ1. How effective is MemSpate in detecting memory safety vulnerabilities in
real-world programs?

RQ2. How does MemSpate compare to other state-of-the-art fuzzers?
RQ3. Can the protocol of MemSpate assist in detecting memory safety vulner-

abilities more comprehensively?

4.1 Experiment Setup

Benchmark Programs. We curated a collection of 12 benchmark applica-
tions from fuzzing papers focusing on memory safety vulnerabilities, as shown
in Table 1.

Table 1. Real-world programs evaluated in our experiment

No. Program Version LoC Input Format Test Instruction

1 bento4-640 1.6.0-640 106K mp4 mp42hls @@

2 bento4-639 1.6.0-639 105K mp4 mp42hls @@

3 binutils 2.40 4984K elf readelf -w @@

4 cflow-1.7 1.7 91K c cflow @@

5 cflow-1.6 1.6 80K c cflow @@

6 cxxfilt 2.40 4984K text cxxfilt -t

7 giflib 5.2.1 17K gif gif2rgb @@

8 mjs 9eae0e6 49K js mjs -f @@

9 openh264 8684722 141K text h264dec @@ ./tmp

10 yara 3.5.0 63K text yara @@ strings

11 yaml-cpp 0.6.2 122K text parse @@

12 yasm 9defefa 176K asm yasm @@

Baseline Fuzzers. We evaluated MemSpate by comparing it against five state-
of-the-art fuzzers: AFL++ [6], MemLock [17], UAFL [15], HTFuzz [20] and
TortoiseFuzz [16]. These fuzzers were selected based on several factors. Firstly,
AFL++ is an improved version of AFL [9] and has established itself as one of the
most widely used baselines in recent research papers. Both Memlock and Tor-
toiseFuzz have proposed strategies for memory operations to discover memory
spatial vulnerabilities, while UAFL and HTFuzz focus on detecting memory tem-
poral vulnerabilities via feedback on memory operation sequences. Since UAFL
is not publicly available, we made efforts to replicate it in our environment and
refer to our replication of UAFL as UAFL†.



248 Z. Fu et al.

Evaluation Metrics. Since most baseline fuzzers and MemSpate focus on
detecting memory safety vulnerabilities, we evaluate the performance of the
fuzzers in terms of the number of memory safety vulnerabilities, instead of the
number of unique crashes as traditional coverage-guided grey-box fuzzers do.
Similar to TortoiseFuzz [16] and HTFuzz [20], we utilized AddressSanitizer [13] to
analyze the crashes and to identify memory safety vulnerabilities. Additionally,
we manually reviewed the crash reports to identify unique vulnerabilities and
compared them with existing CVEs and GitHub issues to discover new vulner-
abilities.
Experiment Configuration. Each experiment ran for 24 h, and the command
options for the benchmark programs are listed in the last column of Table 1.
According to Klees’s suggestions [8], each experiment was conducted 10 times
to minimize the influence of randomness.
Experiment Infrastructure. All the experiments were conducted using the
same setup: a docker container configured with 1 CPU core of Intel(R) Xeon(R)
Gold 5218R CPU @ 2.10GHz and the 64-bit Ubuntu 18.04 LTS.

Table 2. Number of memory safety vulnerabilities found by different fuzzers

Program MemSpate AFL++ MemLock UAFL† TortoiseFuzz HTFuzz

Uniq Avg Uniq Avg Uniq Avg Uniq Avg Uniq Avg Uniq Avg

bento4-640 1 0.10 1 0.10 0 0.00 0 0.00 0 0.00 1 0.10

bento4-639 4 4.00 4 4.00 4 2.50 4 3.80 4 2.60 4 3.80

binutils 1 0.30 0 0.00 0 0.00 1 0.10 0 0.00 1 0.10

cflow-1.7 4 1.60 1 0.80 3 1.10 1 0.80 1 0.30 1 0.50

cflow-1.6 4 2.80 4 1.90 3 1.80 5 2.20 3 1.30 2 1.10

cxxfilt 1 0.20 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

giflib 1 0.50 1 0.30 1 0.10 0 0.00 1 0.40 1 0.10

mjs 12 5.50 7 4.90 3 2.10 9 5.50 7 4.90 7 5.20

openh264 2 1.10 1 1.00 0 0.00 1 1.00 1 0.90 1 1.00

yaml-cpp 5 2.70 5 2.40 6 3.00 5 2.60 5 2.30 0 0.00

yara 9 4.00 6 3.50 3 1.90 5 3.40 5 3.10 6 5.30

yasm 16 10.90 15 8.00 2 0.70 15 9.70 14 9.70 10 7.70

total 60 33.70 45 26.90 25 13.20 46 29.10 41 25.50 34 24.90

4.2 Memory-Related Vulnerability Detection Capability (RQ1)

The “MemSpate” column in Table 2 presents the results of MemSpate in detect-
ing memory safety vulnerabilities, where the term “Uniq” denotes the total num-
ber of unique vulnerabilities found during the 10 runs while “Avg” denotes the
average number of unique vulnerabilities among the 10 runs. As depicted in
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Table 2, MemSpate successfully found a total of 60 memory safety vulnerabili-
ties and an average of 33.70 ones across the 12 benchmark programs. Notably,
MemSpate was able to identify more than 10 memory safety vulnerabilities in
mjs and yasm.

Moreover, we manually reviewed the vulnerabilities and compared them with
existing CVEs and GitHub issues. And we found that MemSpate is able to find
4 previously unknown memory safety vulnerabilities in yasm, which have been
submitted in GitHub and are listed in Table 3.

Table 3. New memory safety vulnerabilities found by MemSpate

Program Version Report Vulnerability Type

yasm 9defefa Issue-273 null-pointer-dereference

Issue-274 heap-use-after-free

Issue-276 heap-buffer-overflow

Issue-277 null-pointer-dereference

According to the above results, we conclude that MemSpate is capable of
detecting memory safety vulnerabilities in real-world programs.

4.3 Comparison with Other Memory-Related SOTA Fuzzers (RQ2)

Table 2 also presents the number of memory safety vulnerabilities detected
by each baseline fuzzer (e.g., AFL++, MemLock, UAFL†, TortoiseFuzz, and
HTFuzz) on 12 benchmark programs over 24 h, where the numbers in bold
indicate that the corresponding fuzzers achieve the best results. The results
demonstrate that MemSpate achieves superior performance in terms of both
total unique vulnerability number and average vulnerability number. Specifi-
cally, compared with AFL++, MemLock, UAFL†, TortoiseFuzz and HTFuzz,
MemSpate can respectively identify approximately 33.33%, 140.00%, 30.43%,
46.34% and 76.47% more unique vulnerabilities in total, as well as respectively
identifying 25.82%, 155.30%, 15.81%, 32.16% and 35.34% more vulnerabilities on
average. Moreover, MemSpate demonstrates superior performance across most
programs. In particular, on the program mjs, MemSpate identifies 12 memory
safety vulnerabilities, which is significantly higher compared to any other fuzzers.

Figure 3 illustrates the trend of memory safety vulnerabilities found by each
fuzzer over time. Within the initial 6-h period, all baseline fuzzers have reached
a convergence point and successfully detected over 75.00% of the vulnerabili-
ties within their detection scope. However, for MemSpate, 36.67% of detected
vulnerabilities are explored in the later stage, resulting in a significantly higher
number of detected vulnerabilities compared to the baseline fuzzers.

Based on the findings presented in Table 2, we have computed the p-value
of the Mann-Whitney U-test between MemSpate and each baseline fuzzer. The
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Fig. 3. Trend of memory safety vulnerabilities found by each fuzzer over time

Table 4. P-values of memory safety vulnerabilities found in 10 runs

programs AFL++ MemLock UAFL† TortoiseFuzz HTFuzz

bento4-640 5.29e-01 1.84e-01 1.84e-01 1.84e-01 5.29e-01

bento4-639 1.00e+00 1.01e-04 8.37e-02 9.86e-05 8.37e-02

binutils 3.84e-02 3.84e-02 1.50e-01 3.84e-02 1.50e-01

cflow-1.7 1.81e-03 1.26e-02 1.81e-03 2.45e-04 6.77e-04

cflow-1.6 1.15e-03 8.56e-03 5.06e-03 8.92e-05 6.89e-05

cxxfilt 8.37e-02 8.37e-02 8.37e-02 8.37e-02 8.37e-02

giflib 1.99e-01 3.18e-02 6.83e-03 3.47e-01 3.18e-02

mjs 1.15e-01 3.95e-05 6.22e-01 1.15e-01 2.64e-01

openh264 1.84e-01 1.21e-05 1.84e-01 9.58e-02 1.84e-01

yaml-cpp 1.02e-01 9.33e-01 3.03e-01 4.46e-02 2.02e-05

yara 8.09e-02 1.63e-04 6.63e-02 8.60e-03 9.99e-01

yasm 7.42e-04 5.97e-05 4.00e-02 4.77e-02 5.97e-05

outcomes are shown in Table 4, with values highlighted in bold indicating sig-
nificance levels below 0.05. Our analysis reveals that MemSpate outperforms all
the five compared fuzzers in 29 out of the 60 comparisons with a significant
difference.

Overall, our experimental results demonstrate that MemSpate outperformed
AFL++, MemLock, UAFL†, TortoiseFuzz, and HTFuzz in identifying memory
safety vulnerabilities.

4.4 Effectiveness of Memory Usage Protocol (RQ3)

Figure 4 presents the number of memory safety vulnerabilities categorized by
various types found by each fuzzer. The findings demonstrate that MemSpate
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is capable of detecting all 9 types of memory safety vulnerabilities, whereas
other fuzzers fail to detect 2 or 3 types among the 12 benchmark programs.
Furthermore, MemSpate has identified a total of 33 memory temporal vulnera-
bilities (including double-free, heap-use-after-free, invalid-free and null-pointer-
dereference) and 27 memory spatial vulnerabilities (the others). In comparison,
AFL++, MemLock, UAFL†, TortoiseFuzz and HTFuzz have found 27, 8, 28,
25 and 21 memory temporal vulnerabilities respectively. Additionally, they have
identified 18, 17, 18, 16 and 13 memory spatial vulnerabilities. Notably, only
MemSpate has the ability to uncover the invalid-free vulnerability.

Fig. 4. Vulnerability numbers categorized by various types

Figure 5 presents upset plots illustrating the collective number of vulnerabil-
ities discovered by different sets of fuzzers. The figure indicates that there exists
a total of 12 vulnerabilities that can be found by all the fuzzers. Furthermore,
MemSpate demonstrates the capability to exclusively identify 8 vulnerabilities,
while both UAFL† and TortoiseFuzz can each uniquely identify one vulnerability.
Among all the vulnerabilities, MemSpate only missed 6 vulnerabilities, whereas
AFL++, MemLock, UAFL†, TortoiseFuzz, and HTFuzz missed a greater number
at 21, 41, 20, 25, and 32, respectively.

Based on the above findings, we can deduce that the memory usage protocol
of MemSpate contributes to a more comprehensive detection of memory safety
vulnerabilities, encompassing both a greater number and variety of types.

4.5 Discussion

Overhead of Instrumentation. This paper presents our proposed fuzzer,
MemSpate, which effectively detects memory safety vulnerabilities. However,
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due to the high expressiveness of preliminary static analysis, the instrumenta-
tion component introduces more overhead to the target program compared to
other fuzzers. We calculated the average time (in seconds) spent on 10 runs of
instrumentation, and the results are shown in Table 5.

Fig. 5. UpSet Plot for MemSpate and five baseline fuzzers

It is evident that MemSpate consumes an average of 517.32 s to instrument
the target programs, which is significantly higher than its base fuzzer AFL++
(3.74 ×). Considering our replication UAFL† of UAFL on MemSpate, we find
that its average cost of instrumentation (3.70 ×compared to AFL++) is slightly
lower than that of MemSpate. MemLock, TortoiseFuzz, and HTFuzz are built
on top of AFL and may have a lower instrumentation overhead than AFL++.
While MemLock’s instrumentation is even slightly lower than AFL++ (0.90
×), TortoiseFuzz and HTFuzz still have a higher instrumentation overhead than
AFL++ (1.96 ×and 2.04 ×) due to the complex memory safety protocol they
propose; however, both are far lower than MemSpate and UAFL†.

Upon thorough analysis, we assert that the high instrumentation overhead
of MemSpate, along with the requirement for static analysis and additional pre-
processing before conducting static analysis, also contributes to a considerable
expense that cannot be ignored.

Moreover, an experiment was conducted to investigate the impact of our
instrumentation on the fuzzing loop phase. The speed of the fuzzing loop for
each fuzzer on each benchmark program was measured in terms of executions
per second. Figure 6 illustrates the results from 10 runs. The findings indicate
that the executions per second of MemSpate are not significantly lower than
those of the other base fuzzers and even show significant improvement compared
to the other base fuzzers on program yara.

In conclusion, the instrumentation cost of MemSpate in the static analysis
stage results in a significant time investment. However, the time overhead of
these static analyses (approximately 10 min) falls within acceptable limits when
compared to the duration of the fuzzing loop test (24 h as we have set). Further-
more, the impact of instrumentation on the efficiency of fuzzing loop execution
is negligible.
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Table 5. Instrumentation overhead of fuzzers

programs MemSpate AFL++ MemLock UAFL† TortoiseFuzz HTFuzz

bento4-639 466.90 182.10 140.40 436.00 174.40 152.00

bento4-640 461.10 193.10 133.90 454.10 185.40 150.10

binutils 1275.10 452.10 407.10 1285.10 907.40 867.30

cflow-1.6 243.70 42.10 44.10 245.50 65.20 58.80

cflow-1.7 266.10 47.80 48.80 285.50 74.30 64.20

cxxfilt 1865.60 449.50 432.00 1888.70 892.10 831.30

giflib 90.60 33.50 30.40 90.70 35.10 31.90

mjs 36.00 5.20 4.80 32.80 12.30 10.90

openh264 134.60 39.10 37.20 117.30 145.40 114.40

yaml-cpp 387.40 133.70 139.50 342.00 607.10 966.70

yara 457.10 33.70 32.90 470.10 58.20 51.70

yasm 523.60 47.50 41.60 490.60 93.30 81.90

Average 517.32 138.28 124.39 511.53 270.85 281.77

Fig. 6. Executions per second of each fuzzer in 10 runs

Threats to Validity. We discuss the potential threats to the validity and gen-
eralizability of our study, as well as the measures we have taken to mitigate or
control them. One potential threat is the selection bias that may arise from using
only 12 open-source programs, which could limit the diversity of our dataset.
To address this concern, we made sure to select diverse programs from vari-
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ous domains and with different characteristics. We are continuously working on
improving and evaluating MemSpate. Another potential concern entails the sam-
pling error that may arise when utilizing a restricted number of seeds and inputs
for each program and fuzzer. This limitation has the potential to impact the
comprehensive nature of our testing process and introduce factors that create
noise or variance in our findings. To address this, we employed an identical set
of seeds for each fuzzer and conducted a 24-h runtime. We repeated each exper-
iment 10 times and reported the average and standard deviation to account for
any potential variations. A third threat to consider is the possibility of statistical
errors. In order to compare MemSpate with other testers, we utilized statisti-
cal tests and significance levels. However, it is important to acknowledge that
these tests have certain assumptions and limitations. To address this concern,
we thoroughly checked the assumptions and conditions before applying the tests,
ensuring that we used the appropriate test for each specific scenario.

5 Related Work

There are various memory-related grey-box fuzzing solutions, whose target can
be classified into two categories: memory spatial bugs and memory temporal
bugs.
Fuzzing for Memory Spatial Bugs. Dowser [7], SAFAL [2] and a concolic
execution-based smart fuzzing method [11] are specifically designed to detect
buffer overflow vulnerabilities. MemFuzz [3] leverages information about mem-
ory accesses to guide the fuzzing process. MemLock [17] employs memory con-
sumption information to guide the fuzzing process. MemConFuzz [4] extracts
the locations of heap operations and data-dependent functions through static
data flow analysis. ovAFLow [21] broadens the vulnerable targets to memory
operation function arguments and memory access loop counts. TortoiseFuzz [16]
proposes a new metric coverage accounting to evaluate coverage by security
impacts (i.e., memory operations), and introduces a new scheme to prioritize
fuzzing inputs.
Fuzzing for Memory Temporal Bugs. FUZE [18] is a new framework to
facilitate the process of kernel UAF exploitation. UAFuzz [12] relies on user-
defined UAF sites to guide the fuzzer during exploration. UAFL [15] uses types-
tate automata to describe a memory temporal protocol of use-after-free vulner-
ability. HTFuzz [20] only focuses on the temporal memory vulnerability. LTL-
FUZZER [10] supports a linear-time temporal logic protocol, but requires expert
knowledge to instrument program locations related to potential temporal vio-
lations. MDFuzz [23] identifies memory operation sequences as targets to guide
the fuzzer without wasting resources exploring unrelated program components.

Note that existing fuzzing solutions typically only address memory usage par-
tially, limiting their ability to detect all types of memory safety vulnerabilities.
While MemSpate utilizes a more comprehensive memory usage, and thus is able
to detect more memory safety vulnerabilities.
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6 Conclusion

We have proposed MemSpate, a fuzzing technique that utilizes a more compre-
hensive memory usage protocol to efficiently detect memory safety vulnerabili-
ties. We have evaluated MemSpate on 12 real-world programs, demonstrating its
superior performance over 5 state-of-the-art fuzzers in terms of detecting mem-
ory safety vulnerabilities. Additionally, we have disclosed 4 previously unknown
vulnerabilities to the respective vendors. This underscores MemSpate’s efficacy
in testing real-world programs that are prone to memory safety vulnerabilities.
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Abstract. The formalization of mathematical theorems is an important
direction in the field of formal verification. Formalizing mathematical
theorems ensures their accuracy and rigor in practical applications. Non-
principal arithmetical ultrafilter (NPAUF) was proposed in [27]. It can be
directly applied to the extension of number systems such as real numbers
and non-standard real numbers. So far, though the existence of NPAUF
has not been proven only with general set theories, it can be proven
with the help of some additional consistent set-theoretic assumptions,
such as the Continuum Hypothesis (CH). This paper presents the formal
verification of the existence of NPAUF, implemented with the Coq proof
assistant and grounded in the Morse-Kelley (MK) axiomatic set theory
augmented with CH. The formal descriptions for the concepts related to
filter, arithmetical ultrafilter (AUF), NPAUF, and CH are all provided.
This work serves as the first step of our long-term objective – to formalize
the non-standard analysis.
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1 Introduction

This paper is dedicated to the formal verification of a mathematical theory
– the existence of non-principal arithmetical ultrafilters (NPAUF), which was
mentioned by Wang in [27] then officially named in [28]. The formalization is
implemented in the Coq proof assistant.

Ultrafilter is a concept derived from topology and is widely applied in logic,
set theory, model theory, etc. [8] Ultrafilter can be divided into principal and
non-principal ultrafilter, and NPAUF is exactly a special kind of the latter for
the reason that
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– its existence may not be proven within general axiomatic set theories [27,29].
– it can be directly applied in the non-standard extensions of algebraic struc-

tures [27,30].

Bartoszynski and Shelah once asserted that the existence of NPAUF can-
not be proven solely within the framework of ZFC set theory [3]. Although this
announcement was later retracted due to the discovery of errors in the proof,
it is generally believed that the conclusion is likely still correct [29,30]. Prov-
ing the existence of NPAUF necessitates seeking support from additional set
theory hypotheses. Among the various set theory hypotheses capable of deduc-
ing NPAUF, the Continuum Hypothesis (CH) is undoubtedly well-known and
regarded as a safe assumption [4,7,29,30].

In [27], Wang mentioned a real number theory involving the use of NPAUF.
With the aid of NPAUF, the set of natural numbers ω can be extended to the
non-standard natural number set ∗N that encompasses infinity natural num-
bers. Additionally, following classical methods of extending natural numbers to
rational numbers, ∗N can be further extended to the non-standard integer set
∗Z inclusive of infinity integers, and the non-standard rational number set ∗Q,
which encompasses both infinity and infinitesimal numbers. The structure of
real numbers is derived by equivalently classifying a specific subset of ∗Q. This
theory utilizes a non-standard extension approach to bypass the usual rational
numbers and directly construct real numbers [30].

Following the thought of the process from ω to ∗Q, it is possible that Wang’s
method could be applied in the construction of hyper-real numbers (i.e., non-
standard real numbers), which is the foundation of non-standard analysis. Since
the birth of non-standard analysis, the construction of hyper-real numbers has
mainly relied on ultrapower and ultraproduct method [15,17,22], without widely
accepted alternatives. Constructing hyper-real numbers using NPAUF could be
a new method in the framework containing CH, which is of significant impor-
tance for the future development of mathematics. Robinson once quoted Gödel’s
statements in the preface of his masterpiece Nonstandard Analysis [22]: “There
are good reasons to believe that non-standard analysis, in some version or other,
will be the analysis of the future.”

Our long-term goal is to formally prove Wang’s real number theory, and apply
this method to the formalization of hyper-real numbers, based on which the
formalization of non-standard analysis will be implemented. The formalization
of NPAUF’s existence is a minor section and the first step of our final objective.

The study of filters needs to be conducted within the context of set theories.
In mathematical research, Zermelo-Fraenkel (ZFC) axiomatic set theory is most
widely adopted, and there already are various research works involving the for-
malization of ZFC [2,26,32,33,36]. Another important axiomatic set theory is
Morse-Kelley set theory (MK), which was first proposed by Wang in 1949 [31]
and was published as the appendix in Kelley’s General Topology [18] in 1955.
It includes eight axioms, one axiom schema, and 181 definitions or theorems.
Different from ZFC, MK acknowledges “classes” (which are more numerous than
sets) as fundamental objects. That is to say, every mathematical object (ordered
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pair, function, integer, etc.) is a class, and only those classes belonging to some
other ones are defined as sets. The non-set classes are named “proper classes”.
Monk, Rubin, and Mendelson submit that MK does what is expected of a set
theory while being less cumbersome than ZFC [19,20,23]. In fact, ZFC can be
proven consistent in MK [5]. We consider that MK is a proper extension of ZFC
and is convenient to utilize in formalization processes [24,35]. We have finished
the MK formalization in Coq [24,35], and the work of this paper is based on it.

Coq is an interactive theorem prover, which serves as a computer tool for
describing definitions, theorems and verifying proofs [6,9,16,21]. Coq is one
of the most widely used and well-regarded theorem provers today. The most
remarkable achievements based on Coq include, but are not limited to: In 2008,
Gonthier and Werner successfully provided a computer proof of the famous Four
Color Theorem based on Coq [13]; subsequently, after years of effort, Gonthier
and his colleagues completed the formal verification of the Odd Order Theo-
rem in 2013 [14]. The renowned mathematician and computer scientist Wiedijk
believes that the ongoing formalization of mathematics is a mathematical revo-
lution [34]. “With the help of computational proof assistants, formal verification
could become the new standard for rigor in mathematics.” [1]

This paper presents the formal description of the concepts of filter, ultrafilter,
NPAUF and more, then details the formal verification of the existence of NPAUF.
The work is implemented in Coq proof assistant and based on MK formalization.
The mathematical definitions and theorems used in this paper are mainly taken
from textbooks [18,29,30] ( [18] contributes to the MK parts and [29,30] to the
filter parts). The entire Coq code is available at here.1

The paper is organized as follows: Sect. 2 summarizes the existing formaliza-
tion work on MK; Sect. 3 details auxiliary results about filters prepared for the
formalization of NPAUF; Sect. 4 presents the entire formal proof of the existence
of NPAUF; Sect. 5 is conclusion.

2 Morse-Kelley Axiomatic Set Theory

Our team have finished the formalization of Morse-Kelley (MK) axiomatic set
theory [24,35]. We summarize its important content as preparatory knowledge.

MK is grounded in Classical Logic [18], whereas the Coq system adopts Intu-
itionistic Logic [6]. Therefore, the Law of Excluded Middle needs to be assumed:
Axiom classic : ∀ (P : Prop), P \/ ∼P.

Compared to ZFC that only pays attention to the objects of “set”, MK
acknowledges the more extensive objects of “class”. The term “class” does not
appear in any axiom, definition or theorem in MK, but the primary interpreta-
tion of these statements is as assertions about classes. In Coq, the term “class”
is declared as a new type “Class”, which is living in the topmost sort “Type”.
Parameter Class : Type.

1 https://github.com/1DGW/Formal-verification-of-the-existence-of-non-principal-
arithmetical-ultrafilters-in-Coq/releases/tag/v1.0.

https://github.com/1DGW/Formal-verification-of-the-existence-of-non-principal-arithmetical-ultrafilters-in-Coq/archive/refs/tags/v1.0.zip
https://github.com/1DGW/Formal-verification-of-the-existence-of-non-principal-arithmetical-ultrafilters-in-Coq/releases/tag/v1.0
https://github.com/1DGW/Formal-verification-of-the-existence-of-non-principal-arithmetical-ultrafilters-in-Coq/releases/tag/v1.0
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There are two primitive constants besides the term “class”. The first is “∈”,
which is read “is a member of” or “belongs to”. This means that one mathematical
object (class) can be an element of another one. The second is denoted, rather
strangely, “{·· : · · · }” and is read “the class of all ·· such that · · · ”. It is
the classifier and represents a class consisting of classes that satisfy a specific
property. For example, “{x : x /∈ y}” represents the class that consists of
all members not belonging to y. The constant “∈” is described as “In” and
“{·· : · · · }” as “Classifier”.
Parameter In : Class -> Class -> Prop.
Parameter Classifier : (Class -> Prop) -> Class.

Notation "x ∈ y" := (In x y) (at level 70).
Notation "\{ P \}" := (Classifier P) (at level 0).

The type of “In” is actually “Class -> Class -> Prop”, signifying that it
takes two classes as input and produces a proposition. For instance, given classes
x and y, “x ∈ y” represents the proposition that x belongs to y.

The type of “Classifier” is slightly more intricate. In its type “(Class ->
Prop) -> Class”, the first “Class” corresponds to the first placeholder in the clas-
sifier constant, intended to be filled by a variable representing a member of the
classifier. The “Prop” corresponds to the second placeholder, meant for a propo-
sition (whether correct or not). The last “Class” indicates that the classifier is
indeed a class, but we do not know if there are members in it. Taken together,
“(Class -> Prop)” implies that the proposition in the second placeholder takes
the variable from the first as a parameter. Thus, in the notation “\{ P \}”, the
type of “P”, which represents a proposition with a parameter, is precisely “Class
-> Prop”.

The constants “class”, “∈” and “{·· : · · · }” form the basic structure of MK,
through which all the axioms, definitions and theorems in MK can be described.

The definition of “set” is one of the most crucial definitions in MK, it con-
strains the concept of set to avoid the Russell’s Paradox, excluding certain classes
that are deemed “too large” (e.g., {u : u = u}, {u : u /∈ u}) [18,24,35].

Definition (Set). x is a set if and only if for some y, x ∈ y.
Definition Ensemble x := ∃ y, x ∈ y.

A class that is a member of another class is termed a set. A class that is not
a set is called a proper class.

MK inherits most elementary concepts and operations concerning sets (e.g.,
intersection, union, complement, pairs) from naive set theory and extends them
to all classes. For example, x ∩ y in MK represents the intersection of classes x
and y, either of which could be a set or not. The table presented in Appendix A
lists the fundamental definitions and mathematical meanings in MK along with
their notations in Coq, which will be frequently used in latter sections.

Additionally, the entire MK code attached to this paper differs somewhat
from the version we presented in [24,35], with the main changes being: separating
all the axioms and definitions of MK into one file as its main structure, and
theorems along with their proofs into another file for easy lookup and calling.



The Continuum Hypothesis Implies the Existence of NPAUF 261

This structured presentation makes the entire MK formalization concise and
readable. For more details about MK, refer to [18,24,35]; or access Coq-related
resources of MK from here.2

3 Auxiliary Results

As previously mentioned in the Introduction, to prove the existence of NPAUF,
concepts about filters are involved. This section introduces our formalization
work on filter-related concepts that will be used in the formal proof.

3.1 About Filters

Definition 1 (Filter Base). For each set A, assume that B is a non-empty
family of subsets of A (i.e., B �= ∅ ∧ B ⊂ 2A) and satisfies:

1) ∅ /∈ B,
2) if a, b ∈ B, then a ∩ b ∈ B.

where 2A(= {u : u ⊂ A}) is the power set of A, and B ⊂ 2A represents that B
is a subset of 2A (not strict). Then B is called a filter base over A.

The formalization of filter base requires two parameters B and A. Besides, A
and B have type “Class”, which means that the formal definition is more general,
applicable to any classes.
Definition FilterBase B A := B <> Φ /\ B ⊂ pow(A)

/\ Φ /∈ B /\ (∀ a b, a ∈ B -> b ∈ B -> (a ∩ b) ∈ B).

where “pow(A)” represents the power class of A, “<>” represents inequality sign,
and “Φ” the empty set. The interpretations of other notations here are same as
those in mathematics.

Definition 2 (Filter). For each set A, assume that F is a family of subsets of
A (i.e., F ⊂ 2A) and satisfies:

1) ∅ /∈ F, A ∈ F,
2) if a, b ∈ F , then a ∩ b ∈ F ,
3) if a ⊂ b ⊂ A and a ∈ F , then b ∈ F.

F is called a filter over A.

Just similar to the formalization of filter base, two parameters F and A are
required.
Definition Filter F A := F ⊂ pow(A) /\ Φ /∈ F /\ A ∈ F

/\ (∀ a b, a ∈ F -> b ∈ F -> (a ∩ b) ∈ F)
/\ (∀ a b, a ⊂ b -> b ⊂ A -> a ∈ F -> b ∈ F).

2 https://github.com/1DGW/Formalization-of-Morse-Kelley-axiomatic-set-theory.

https://github.com/1DGW/Formalization-of-Morse-Kelley-axiomatic-set-theory
https://github.com/1DGW/Formalization-of-Morse-Kelley-axiomatic-set-theory
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Definition 3 (Ultrafilter). Filter F over A is an ultrafilter if it satisfies:

∀a, a ⊂ A =⇒ a ∈ F ∨ (A ∼ a) ∈ F,

where A ∼ a represents the difference of A and a.

Ultrafilter has only one more condition than filter.
Definition ultraFilter F A := Filter F A

/\ (∀ a, a ⊂ A -> a ∈ F \/ (A ∼ a) ∈ F).

Definition 4 (Principal Ultrafilter). For every a ∈ A, the following set

{u : u ⊂ A ∧ a ∈ u},

denoted as Fa, is an ultrafilter. Each Fa, corresponding to the element a of A,
is called a principal ultrafilter over A.

Principal ultrafilters are a class of ultrafilters that can be concretely con-
structed. Formalizing this concept requires two steps: constructing the set Fa

and verifying that Fa is indeed an ultrafilter.
Definition F A a := \{ λ u, u ⊂ A /\ a ∈ u \}.

Property Fa_P1 : ∀ A a, F A a = Φ <-> a /∈ A.
Property Fa_P2_a : ∀ A a, ultraFilter (F A a) A -> a ∈ A.
Property Fa_P2_b : ∀ A a, Ensemble A -> a ∈ A -> ultraFilter (F A a) A.

The ultrafilters that are not principal ones are called non-principal ultrafil-
ters. Besides, they are also known as free ultrafilters.

Definition 5 (Free Ultrafilter). Ultrafilter F over A is a free ultrafilter if it
satisfies:

∀a, a is a finite subset of A =⇒ a /∈ F.

Free ultrafilter has only one more condition than ultrafilter as well.
Definition free_ultraFilter F A := ultraFilter F A

/\ (∀ a, a ⊂ A -> Finite a -> a /∈ F).

where “a ⊂ A” and “Finite a” represent “a is a finite subset of A”.
The following formalization indicates that each principal ultrafilter is not a

free ultrafilter, and each non-free ultrafilter is a certain principal ultrafilter.
Theorem FT2_a : ∀ A a, Ensemble A -> a ∈ A

-> ultraFilter (F A a) A /\ ∼ free_ultraFilter (F A a) A.
Theorem FT2_b : ∀ F0 A, ultraFilter F0 A

-> ∼ free_ultraFilter F0 A -> (∃ a, a ∈ A /\ F0 = F A a).

Definition 6 (Fréchet Filter). The Fréchet filter over set A is denoted as:

Fσ = {a : a ⊂ A ∧ A ∼ a is finite}.

Definition Fσ A := \{ λ a, a ⊂ A /\ Finite (A ∼ a) \}.
Property Fσ_is_just_Filter : ∀ A, ∼ Finite A -> Ensemble A

-> Filter (Fσ A) A /\ ∼ ultraFilter (Fσ A) A
/\ (∀ a, a ⊂ A -> Finite a -> a /∈ (Fσ A)).



The Continuum Hypothesis Implies the Existence of NPAUF 263

“Fσ_is_just_Filter” verifies that for each infinite set A, Fσ (over A) is merely
a filter but not an ultrafilter over A; meanwhile, every finite subset of A is not
in Fσ. Nevertheless, Fσ is a special filter, because free ultrafilters are equivalent
to the ultrafilters that contain Fσ, although Fσ itself is merely a filter. This
suggests the importance of Fσ in the quest for non-principal ultrafilters.
Proposition Fσ_and_free_ultrafilter : ∀ F A, Ensemble A

-> ∼ Finite A -> ultraFilter F A
-> free_ultraFilter F A <-> (Fσ A) ⊂ F.

3.2 Extension of Filters

The process of constructing NPAUF involves iteratively extending specific fil-
ters or filter bases, in which an important theorem – Filter Extension Principle
(FEP), also known as “Ultrafilter Theorem” [25], a consequence of the Axiom of
Choice – will be utilized.

To describe FEP, the definition of the finite intersection property is required.

Definition 7 (Finite Intersection Property). G possesses the finite inter-
section property if the intersection of a finite number of elements in G is non-
empty:

∀a1, a2, · · · , an ∈ G, a1 ∩ a2 ∩ · · · ∩ an �= ∅.

Definition Finite_Intersection G := ∀ A, A ⊂ G -> Finite A -> ∩A <> Φ.

In code, “∩A” represents the intersection of all elements in A (i.e., a1 ∩ a2 ∩
· · · ∩ an), which is not an empty set (“∩ A <> Φ”).

Theorem (FEP). For each set A, if the subset family G of A (i.e., G ⊂ 2A)
possesses finite intersection property, then there exists

1) a filter base B over A satisfying G ⊂ B;
2) a filter F over A satisfying G ⊂ F ;
3) an ultrafilter F over A satisfying G ⊂ F .

The filter base and filter extended from G are constructive. For every subset
family G of A, if G possesses finite intersection property, it can be extended to
form a filter base B as follows:

B = {a1 ∩ a2 ∩ · · · ∩ an : a1, a2, · · · , an ∈ G (n ≥ 1)};

and extended to form a filter F as:

F = {u : u ⊂ A ∧ ∃a1, a2, · · · , an ∈ G, a1 ∩ a2 ∩ · · · ∩ an ⊂ u (n ≥ 1)}.

Definition FilterBase_from G :=
\{ λ u, ∃ S, S ⊂ G /\ Finite S /\ u = ∩S \}.

Definition Filter_from G A :=
\{ λ u, u ⊂ A /\ ∃ S, S ⊂ G /\ Finite S /\ ∩S ⊂ u \}.

Notation "〈 G 〉→b" := (FilterBase_from G) : filter_scope.

Notation "〈 G | A 〉→f" := (Filter_from G A) : filter_scope.
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In code, it is self-evident that the set represented by “S” is not empty. Because
in MK system, ∩∅ is a proper class that cannot belong to any other classes. This
guarantees the condition n ≥ 1.

The following formalization verifies that the extension in the manner
described above does result in filter bases and filters that contain G respectively.
Lemma Filter_Extension1 : ∀ G A, G <> Φ -> G ⊂ pow(A)

-> Finite_Intersection G -> G ⊂ (〈G〉→b) /\ FilterBase (〈G〉→b) A.
Lemma Filter_Extension_1_and_2 : ∀ G A, G <> Φ -> G ⊂ pow(A) -> Ensemble A

-> Finite_Intersection G -> G ⊂ (〈G|A〉→f) /\ Filter (〈G|A〉→f) A.

As for the extension from G to ultrafilters, the proof requires the use of the
Axiom of Choice [30], detailed in [10]. The formalization is listed here:
Theorem Filter_Extension_Principle : ∀ G A, G <> Φ -> G ⊂ pow(A) -> Ensemble A

-> Finite_Intersection G -> ∃ F, G ⊂ F /\ ultraFilter F A.

Given that filters possess the finite intersection property (straightforward to
prove), FEP also asserts that every filter can be extended to an ultrafilter. Since
non-principal ultrafilters are those ultrafilters containing Fσ (which is illustrated
in the formalization of Definition 6), non-principal ultrafilters can be obtained
by directly extending Fσ with FEP.

3.3 Arithmetical Ultrafilter

Just as its name implies, NPAUF is an arithmetical ultrafilter (AUF). So the def-
inition of AUF should be introduced, before which we present the formalization
of some involved concepts.

Definition 8 (Image Set). Let f be a function and A be a subset of domain
of f , then the image set of f at A is denoted as:

f�A� = {u : ∃x, u = f(x) ∧ x ∈ A}.

Definition 9 (Preimage Set). Let f be a function and A be a subset of range
of f , then the preimage set of f at A is denoted as:

f−1�A� = {u : u ∈ domain f ∧ f(u) ∈ A}.

Definition ImageSet f A := \{ λ u, ∃ m, u = f[m] /\ m ∈ A \}.
Notation "f 
 A �" := (ImageSet f A)(at level 5) : filter_scope.

Definition PreimageSet f A := \{ λ u, u ∈ dom(f) /\ f[u] ∈ A \}.
Notation "f −1
 A �" := (PreimageSet f A)(at level 5) : filter_scope.

The image set at A is the set of values of f at members in A. In the formal-
ization, A is not restricted to a subset of the domain of f , making its application
scope broader.

Definition 10 (Ultrafilter Transformation). Let F be an ultrafilter, and f
be a function in BA, then the following set

f〈F 〉 = {u : u ⊂ B ∧ f−1�u� ∈ F}
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can be proven an ultrafilter, where BA represents the class consisting of all func-
tions whose domain is A and range contained in B. f〈F 〉 is called a transfor-
mation of ultrafilter F under function f .

Definition Transform F f B := \{ λ u, u ⊂ B /\ f−1
u� ∈ F \}.
Notation "f 〈 F | B 〉" := (Transform F f B)(at level 5) : filter_scope.

Definition β A := \{ λ u, ultraFilter u A \}.

Theorem FT4 : ∀ F f A B, F ∈ (β A) -> Function f
-> dom(f) = A -> ran(f) ⊂ B -> Ensemble B -> f〈F|B〉 ∈ (β B).

The formalization “Transform” actually requires three parameters, therefore
the formal notation looks a little more complicated than that in mathematics.
“β A” represents the ultrafilter space that consists of all ultrafilters over A. “FT4”
is the formal theorem that the ultrafilter F over A can be transformed to be the
ultrafilter f〈F 〉 over B by the function f .

Definition 11 (F-Equivalence). Let F be an ultrafilter over A, then two func-
tions f and g in BA are F -equivalent if and only if

{u : u ∈ A ∧ f(u) = g(u)} ∈ F,

namely f and g are equal on a set in F , which is denoted as f =F g.

Definition AlmostEqual f g A B F := Function f /\ Function g
/\ dom(f) = A /\ dom(g) = A /\ ran(f) ⊂ B /\ ran(g) ⊂ B
/\ F ∈ (β A) /\ \{ λ u, u ∈ A /\ f[u] = g[u] \} ∈ F.

Definition 12 (Arithmetical Ultrafilter). For every ultrafilter F over an
infinite set A, F is an arithmetical ultrafilter if and only if:

∀f, g ∈ AA, f〈F 〉 = g〈F 〉 =⇒ f =F g.

Definition Arithmetical_ultraFilter F A := ∼ Finite A /\ F ∈ (β A)
/\ (∀ f g, Function f -> Function g

-> dom(f) = A -> dom(g) = A -> ran(f) ⊂ A -> ran(g) ⊂ A
-> f〈F|A〉 = g〈F|A〉 -> AlmostEqual f g A A F).

The formal definition consists of three assumptions: “∼ Finite A” indicates
that A is an infinite set, “F ∈ (β A)” represents that F is an ultrafilter over
A, and the last assumption rules that for each function f and g, f〈F 〉 = g〈F 〉
implies that f and g are F -equivalent.

It can be verified that every principal ultrafilter is an AUF:
Theorem FT9 : ∀ A a, Ensemble A -> ∼ Finite A -> a ∈ A

-> Arithmetical_ultraFilter (F A a) A.

The AUFs that are not principal ultrafilters are called non-principal arith-
metical ultrafilters (NPAUFs).
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4 Existence of Non-Principal Arithmetical Ultrafilter
over ω

With the use of the Continuum Hypothesis (CH), NPAUF over ω can be con-
structed [29,30]. ω is the notation utilized to represent the set of natural numbers
in set theory. The concepts and notations introduced in the last section should
be instantiated to ω, which is implemented by the command “Notation”.
Notation Fσ := (filter.Fσ ω).
Notation F := (filter.F ω).
Notation βω := (arithmetical_ultrafilter.β ω).
Notation "f 〈 F0 〉" := (f〈F0|ω〉)(at level 5).
Notation "f =_ F0 g" := (arithmetical_ultrafilter.AlmostEqual f g ω ω F0)

(at level 10, F0 at level 9).

Notation "〈 G 〉→f" := (〈G|ω〉→f).

Then the meanings of the above notations, in sequence, are: Fréchet filter over
ω, principal ultrafilters over ω, the ultrafilter space over ω, the transformation
of ultrafilter F0 under the function f(∈ ωω), functions f, g (∈ ωω) are F0-
equivalent, the filter extended from G.

4.1 Lemmas

This subsection introduces the formalization of the main lemmas (not all of
them) used in the proof process presented in Sect. 4.3. Some other lemmas, not
reflected in the macro-level proof framework, are not elaborated.

Lemma 1. Assume that B is a countable filter base and contains the Fréchet
filter (Fσ ⊂ B), F is the filter extended from B using the Filter Extension
Principle, f and g are functions in ωω(= {u : u is a function ∧ domain u =
ω ∧ range u ⊂ ω}). If

{u : u ∈ ω ∧ f(u) �= g(u)} ∈ F,

and each finite set A contained in ω (A ⊂ ω) satisfies

f−1�g�A�� ∪ g−1�f�A�� /∈ F,

then there exists a subset a ⊂ ω such that B ∪ {a} has the finite intersection
property and f�a� ∩ g�a� = ∅.

A countable set B is usually introduced as “B and ω are equipotent” or “B
is finite” [30]. The former means B and ω have the same cardinality, which is
demonstrated as “P (B) = P (ω) = ω”3 in MK; while the latter is “P (B) ∈ ω”.
P is the function that maps a set to its cardinality, and the cardinality of B is
formalized as “P[B]” in Coq [18,24,35]. Thus we consider “P[B] ∈ ω + P[B] =
ω” in Coq suitable for describing countability.
3 Note that ω has many meanings in set theory. It can represent the set of all natural

numbers, meanwhile it is both the first infinite ordinal number and the first infinite
cardinal number. [18].



The Continuum Hypothesis Implies the Existence of NPAUF 267

Lemma Existence_of_NPAUF_Lemma_a : ∀ B f g, P[B] ∈ ω \/ P[B] = ω

-> FilterBase B ω -> Fσ ⊂ B -> Function f -> Function g
-> dom(f) = ω -> dom(g) = ω -> ran(f) ⊂ ω -> ran(g) ⊂ ω

-> \{ λ u, u ∈ ω /\ f[u] <> g[u] \} ∈ (〈B〉→f)

-> (∀ A, A ⊂ ω -> Finite A -> (f−1
g
A�� ∪ g−1
f
A��) /∈ (〈B〉→f))
-> (∃ a, a ⊂ ω /\ Finite_Intersection (B ∪ [a]) /\ f
a� ∩ g
a� = Φ).

where “〈B〉→f” represents the filter extended from filter base B.

Lemma 2. ωω × ωω is equipotent to 2ω(= {u : u ⊂ ω}).

The symbol 2ω represents the power set of ω, formalized as “pow(ω)”. Symbol
“×” is the Cartesian product operation, and the same notation is adopted in the
MK formalization.
Definition Cartesian x y := \{\ λ u v, u ∈ x /\ v ∈ y \}\.
Notation "x × y" := (Cartesian x y) (at level 2, right associativity ).

Lemma Existence_of_NPAUF_Lemma_b :
\{ λ f, Function f /\ dom(f) = ω /\ ran(f) ⊂ ω \}

× \{ λ f, Function f /\ dom(f) = ω /\ ran(f) ⊂ ω \} ≈ pow(ω).

Lemma 3. If a non-empty set A is countable and the cardinality of all of its
elements is ω, then the cardinality of

⋃
A (the union of all elements of A) is ω.

The formal proof of this lemma can be split into two cases: one where the
cardinality of A is exactly ω,and the other where A is a non-empty finite set.
Lemma Existence_of_NPAUF_Lemma_c1 : ∀ A, P[A] = ω

-> (∀ a, a ∈ A -> P[a] = ω) -> P[∪A] = ω.
Lemma Existence_of_NPAUF_Lemma_c2 : ∀ A, Finite A -> A <> Φ

-> (∀ a, a ∈ A -> P[a] = ω) -> P[∪A] = ω.

Lemma 4. The cardinality of the Fréchet filter (Fσ) over ω is ω.

Lemma 5. If G is equipotent to ω, then the filter base extended from G using
the Filter Extension Principle is equipotent to ω as well.

Lemma 4 and Lemma 5 are straightforward to be formalized as listed here:
Lemma Existence_of_NPAUF_Lemma_d : P[Fσ] = ω.

Lemma Existence_of_NPAUF_Lemma_e : ∀ G, P[G] = ω -> P[〈G〉→b] = ω.

4.2 Formalization of the Continuum Hypothesis

The Continuum Hypothesis (CH) was proposed by Cantor, who, after exten-
sive research, believed that any uncountable subset of the real number set R is
equipotent to R itself [30].

According to the known results, the cardinality of an uncountable set is
greater than ω, while the cardinality of R is equal to the cardinality of the
powerset of ω (i.e., P (R) = P (2ω)) [30]. At the same time, P (2ω) is strictly
greater than ω [18]. Therefore, CH actually asserts that there are no cardinal
numbers between ω and P (2ω).
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Gödel and Cohen have proven that CH is consistent and independent of
general set theory [4,7,11,12], which allows people to confidently use CH in
certain specific situations, such as in proving the existence of NPAUF.

Given that CH cannot be proven in the MK system, we choose the com-
mand “Axiom” to formalize it. The statements declared by Axiom do not require
verification and can be directly invoked.
Axiom CH : ∀ c, c ∈ C -> ω < c -> P[pow(ω)] � c.

where “C” is the formal notation of the class consisting of all cardinal numbers
(see Appendix A), and the notation “<” and “�” are used to compare the sizes
of two cardinal numbers.
Definition Less x y := x ∈ y.
Notation "x < y" := (Less x y) (at level 67, left associativity ).

Definition LessEqual x y := x < y \/ x = y.
Notation "x � y" := (LessEqual x y) (at level 67, left associativity ).

Note that in the context of set theory and cardinalities, x ∈ y exactly means
that cardinal number x is less than cardinal number y (i.e., x < y).

This formalization essentially acknowledges: for each cardinal number c, if
c is strictly greater than ω, then c must be greater than or equal to P (2ω),
meaning there are no cardinal numbers between ω and P (2ω) (strictly greater
than ω and strictly less than P (2ω)). This accurately reflects the mathematical
meaning of the Continuum Hypothesis.

4.3 The Existence of Non-principal Arithmetical Ultrafilters

The formal description that there exists NPAUF is straightforward:
Theorem Existence_of_NPAUF : ∃ F0, Arithmetical_ultraFilter F0 ω

/\ (∀ n, F0 <> F n).

where “F0 <> F n” indicates that the specific arithmetical ultrafilter F0 is not
any principal ultrafilter. The difficulty lies in verifying the tedious proof process.
The manual proof is introduced by Wang in [30]. The overall proof strategy is
divided into two parts.

First, to construct a specific infinite sequence of filter bases:

B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bα ⊂ · · · (α < P (2ω))

where α < P (2ω) represents that the ordinal number α is less than P (2ω) (i.e.,
α ∈ P (2ω)). Such a sequence with mutual containment relationships is called a
“nest” in MK [18,24,35].

Second, to extend
⋃{Bα : α < P (ω)} (the union of all Bα) into an ultrafilter

p using FEP. Then p can be proven exactly an NPAUF.
Thus the most important part of the proof is the construction of the nest of

filter bases above. According to Lemma 2, every ordered pair (fα, gα) belonging
to ωω can be enumerated using the ordinal numbers less than 2ω:

(f0, g0), (f1, g1), (f2, g2), · · · , (fα, gα), · · · (α < P (2ω))
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Then let eα = {n : n ∈ ω ∧ fα(n) = gα(n)}. The idea of constructing the filter
base nest is to continually incorporate eα into Fσ and extend the resulting sets
into filter bases, until all eα have been exhausted.

We present the entire construction process in a procedural manner in Fig. 1,
which serves as the guideline of the formalization.

Fig. 1. the construction process of the filter base nest

It can be observed from Fig. 1 that the construction is divided into five cases,
distinguished by different colors. When α is 0, it corresponds to the blue branch
(B0 = Fσ); when α is a limit ordinal, it corresponds to the yellow branch (where
CH is needed). A limit ordinal cannot be the successor of any ordinals. For
example, ω is a limit ordinal, because there exists no ordinal n such that ω =
n + 1. When Bα is known, the construction of Bα+1 is then divided into 3 cases
respectively corresponding to the purple, red and green branches.

Since the looping process in Fig. 1 will only stop when eα is exhausted, and
the number of eα is infinite, this construction process is actually a transfinite
recursion process. We need to introduce the transfinite recursion theorem, which
has been introduced as the 128th theorem in the MK system [18,24,35].
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Theorem128 (Transfinite Recursion). For each h there exists a function r
such that domain of r is an ordinal and r(x) = h(r|x) holds for each ordinal
number x.
Theorem MKT128a : ∀ h, ∃ r, Function r /\ Ordinal dom(r)

/\ (∀ x, Ordinal_Number x -> r[x] = h[r|(x)]).

where the notation r|x represents the restriction of r to x, and it is formalized as
“r|(x)” in MK formalization. Transfinite recursion indicates that the value of r
at ordinal number x can be determined by the values at all ordinal numbers less
than x, with the determining rule given by h. Therefore, the key to constructing
a transfinite recursive function lies in constructing its corresponding h.

Additionally, in the red branch where Lemma 1 needs to be used, a subset
a of ω is needed. However, the proof of Lemma 1 is non-constructive [30], so we
need the Axiom of Choice to perform the operation of “selecting a”. The Axiom
of Choice is formalized as follows in MK system:
Definition ChoiceFunction c :=

Function c /\ (∀ x, x ∈ dom(c) -> c[x] ∈ x).
Axiom AxiomIX : ∃ c, ChoiceFunction c /\ dom(c) = μ ∼ [Φ].

A choice function c can obtain a specific member from a set in its domain
(i.e., c(x) ∈ x where x ∈ domain c), which is defined by the formal defini-
tion “ChoiceFunction c”. And “AxiomIX” acknowledges that there exists such
a choice function c whose domain is the universe (i.e., the class consisting of all
sets), which means that for each set x, c can select the element c(x) from it.

With the above analysis, we can now implement the construction of Bα.
Firstly, the critical set eα needs to be formalized. Using Lemma 2, we can

obtain a bijective function between P (2ω) and ωω ×ωω. We denote this bijective
function as ϕ in the Coq proof environment:
· · ·
ϕ : Class
H1 : Function ϕ

H4 : Function ϕ−1

H5 : dom(ϕ) = P[pow(ω)]
H6 : ran(ϕ) = \{ λ f, Function f /\ dom(f) = ω /\ ran(f) ⊂ P[pow(ω)] \}

× \{ λ f, Function f /\ dom(f) = ω /\ ran(f) ⊂ P[pow(ω)] \}
________________________________________(1/1)
∃ F0, Arithmetical_ultraFilter F0 ω /\ (∀ n, F0 <> F n)

where “H_” can be regarded as the labels of the conditions introduced by default
during the proof. eα should be formalized as a function whose domain is P (2ω)
and value at α is {n : n ∈ ω ∧ fα(n) = gα(n)}, where fα(n) and gα(n)} need to
be represented by ϕ. We utilize the tactic “set” to define this function:
set (e := \{\ λ α v, α ∈ P[pow(ω)] /\ v = \{ λ n, n ∈ ω

/\ (First ϕ[α])[n] = (Second ϕ[α])[n] \} \}\).

The tactic “set” is to introduce a specific definition, which is similar to the
command “Definition”. But a term defined by “set” only works in the proof
environment it lives in.

According to the setting of ϕ, ϕ[α] represents the ordered pair (fα, gα).
“First” and “Second”, from MK system, can respectively take the first and sec-
ond coordinates of ordered pairs. Thus for each α ∈ P (2ω), {n : n ∈ ω ∧ fα(n) =
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gα(n)}(= eα) is formalized as “e[α]”, which is verified and added to the premises
in proof environment by the tactic “assert”.
assert (Function e /\ dom(e) = P[pow(ω)]) as [].
assert (∀ α, α ∈ P[pow(ω)] -> e[α] = \{ λ m, m ∈ ω

/\ (First ϕ[α])[m] = (Second ϕ[α])[m] \}).

The proposition asserted by the tactic “assert” needs to be proven, after
which it can be invoked as a condition in the proof environment.
· · ·
e := \{\ λ α v, α ∈ P[pow(ω)]

/\ v = \{ λ n, n ∈ ω /\ (First ϕ[α])[n] = (Second ϕ[α])[n] \} \}\
H9a : Function e
H9b : dom(e) = P[pow(ω)]
H9 : ∀ α, α ∈ P[pow(ω)]

-> e[α] = \{ λ m, m ∈ ω /\ (First ϕ[α])[m] = (Second ϕ[α])[m] \}
________________________________________(1/1)
∃ F0, Arithmetical_ultraFilter F0 ω /\ (∀ n, F0 <> F n)

Then we use the tactic “destruct” to break down “AxiomIX” (the Axiom of
Choice), and add the conditions obtained to the proof environment.
destruct AxiomIX as [c[]].

· · ·
c : Class
H10 : ChoiceFunction c
H11 : dom(c) = μ ∼ [Φ]
________________________________________(1/1)
∃ F0, Arithmetical_ultraFilter F0 ω /\ (∀ n, F0 <> F n)

If there is a parameter x representing x, c[x] represents a specific element of x.
With the use of choice function, we construct the h required for transfinite

recursion with the tactic “set” The formal description h is divided into 5 cases
by the “\/” symbol, each corresponding to one of the 5 branches in Fig. 1.
set (h := \{\ λ u v, Ordinal dom(u) /\

((dom(u) = Φ /\ v = Fσ)
\/ (dom(u) <> Φ /\ ((∃ m, LastMember m E dom(u)

/\ (( Finite_Intersection (u[m] ∪ [e[m]]) /\ v = 〈(u[m] ∪ [e[m]])〉→b)
\/ (∼ Finite_Intersection (u[m] ∪ [e[m]])

/\ ((∃ b, Finite b /\ b ⊂ ω /\ ((First ϕ[m])−1
(Second ϕ[m])
b��
∪ (Second ϕ[m])−1
(First ϕ[m])
b��) ∈ 〈u[m]〉→f /\ v = u[m])

\/ ((∀ b, Finite b -> b ⊂ ω -> ((First ϕ[m])−1
(Second ϕ[m])
b��
∪ (Second ϕ[m])−1
(First ϕ[m])
b��) /∈ 〈u[m]〉→f)

/\ v = 〈u[m] ∪ [c[\{ λ w, w ⊂ ω /\ Finite_Intersection (u[m] ∪ [w])

/\ (First ϕ[m])
w� ∩ (Second ϕ[m])
w� = Φ\}]]〉→b )))))
\/ (∼ (∃ m, LastMember m E dom(u)) /\ v = ∪(ran(u)))))) \}\).

Here, “LastMember” (derived from MK formalization) is a formalization not
introduced in previous sections. It is used to indicate that an element is the last
member of another class under a specific relation. For example, “LastMember
x E y” indicates that x is the last member of y under the “∈” relation (E rep-
resents the “∈” relation in MK formalization, see Appendix A). So the use of
“LastMember” here is to determine whether there exists a last element in α under
the “∈” relation, that is, whether α is a limit ordinal.

Now we can apply the transfinite recursion theorem (MKT128a) to h and add
the recursive function r to the proof environment.
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destruct (MKT128a h) as [r[?[]]].

· · ·
r : Class
H13 : Function r
H14 : Ordinal dom(r)
H15 : ∀ x, Ordinal_Number x -> r[x] = h[r|(x)]
________________________________________(1/1)
∃ F0, Arithmetical_ultraFilter F0 ω /\ (∀ n, F0 <> F n)

The range of r|P (2ω) (restriction of r to P (2ω)) is exactly the filter base nest
we want because of the following assertions that can be verified:
assert (r[Φ] = Fσ).
assert (∀ m n, m ∈ n -> r[m] ⊂ r[n]).
assert (∀ n, n ∈ dom(r) -> FilterBase r[n] ω).
assert (∀ n, n ∈ dom(r) -> n ∈ P[pow(ω)] -> P[r[n]] = ω).
assert (P[pow(ω)] ⊂ dom(r)).
assert (Function (r|(P[pow(ω)]))).
assert (dom(r|(P[pow(ω)])) = P[pow(ω)]).

From the first four assertions, it can be observed that the value of r satisfies:

r(0)(= Fσ) ⊂ r(1) ⊂ r(2) ⊂ · · · ⊂ r(n) ⊂ · · · (n ∈ domain of r),

and each r(n) is a countable (CH is needed) filter base over ω. From the last
three assertions, P (2ω) is contained in domain of r, thus the range of r|P (2ω) is
the target filter base nest.

Finally, according to the manual proof, we extend
⋃

(range r|P (2ω)) to an
ultrafilter p using FEP, and p is a non-principal ultrafilter.
· · ·
p : Class

H24 : 〈 ∪ran(r|(P[pow(ω)])) 〉→f ⊂ p
H25 : ultraFilter p ω

H26 : ∀ n, p <> F n
________________________________________(1/1)
∃ F0, Arithmetical_ultraFilter F0 ω /\ (∀ n, F0 <> F n)

As for the verification that p is an arithmetical ultrafilter, it is relatively
mechanical, which only requires proving each of the 5 cases in h (corresponding
to the 5 branches in Fig. 1) one by one.

5 Conclusion

This work is grounded in MK formalization [18,24,35], and is the foundation that
paves the way for the formal verification of the real number theory introduced in
[27,30]. The contributions are the Coq formalization and verification of proofs
regarding filter, ultrafilter, arithmetical ultrafilter, CH and most importantly,
non-principal arithmetical ultrafilter.

The work in this paper comprises 6 (.v)files and approximately 5,500 lines of
Coq code (excluding MK formalization). All code has been successfully executed
in the Coq IDE. Figure 2 shows the dependency of our Coq development (.v)files.

The MK part (red boxes) is the previous work [24,35] this paper based on, and
the part of green boxes is our development in this paper. In operations_on_ω
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Fig. 2. The dependency graph of our Coq development (.v)files

and infinite_sets, we supplemented the formalization of basic operations on
ω and properties of infinite sets, which are not explicitly mentioned in this paper
but are necessary for the proof that Fσ is a filter but not an ultrafilter. Readers
can verify the details in our Coq code.

Formalization indeed allows for rigorous verification of mathematical proofs.
As introduced in Sect. 4.3, a recursive function is essential to prove the existence
of NPAUF; and obtaining the set a derived from Lemma 1 relies on the Axiom of
Choice. These are all details not explicitly reflected in the manual proof descrip-
tion in [30]. Certainly, we cannot deny the correctness of manual proofs for this,
but formalization undoubtedly strengthens the rigor. As proposed by Avigad and
Harrison, “with the help of computational proof assistants, formal verification
could become the new standard for rigor in mathematics.” [1]

To advance further, the formalization work of the real number theory (based
on NPAUF) proposed by Wang in [27,30] is currently in progress. Afterward, as
mentioned in the Introduction, we plan to use NPAUF for the construction of
hyper-real numbers, and establish a formalized system of non-standard analysis.

Acknowledgments. Our work is funded by National Natural Science Foundation
(NNSF) of China under Grant 61936008.
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A Partial Definitions and Notations of MK

Mathematical Meaning Mathematical Symbol

Definition in Coq 4 Notation in Coq

complement of x ¬ x
Complement x := \{ λ y, y /∈ x \} ¬ x

difference of x and y; complement of y relative to x x ∼ y
Setminus x y := x ∩ (¬ y) x ∼ y

void class; empty set ∅; 0
Φ := \{ λ x, x <> x \} Φ

universe, the class including all sets U
μ := \{ λ x, x = x \} μ

class of the intersection of the members of x
⋂

x
Element_I x := \{ λ z, ∀ y, y ∈ x -> z ∈ y \} ∩x

class of the union of the members of x
⋃

x
Element_U x := \{ λ z, ∃ y, z ∈ y /\ y ∈ x \} ∪x

x is a subclass of y; x is contained in y x ⊂ y; x ⊆ y
Included x y := ∀ z, z ∈ x -> z ∈ y x ⊂ y

power class of x 2x

PowerClass x := \{ λ y, y ⊂ x \} pow(x)

singleton class of x {x}
Singleton x := \{ λ z, x ∈ μ -> z = x \} [x]

unordered pair of x and y {xy}
Unordered x y := [x] ∪ [y] [x|y]

ordered pair of x and y (x, y)
Ordered x y := [[x]|[x|y]] [x,y]

the first coordinate of z 1stcoord z
First z := ∩∩z –

the second coordinate of z 2stcoord z
Second z := (∩∪z)∪(∪∪z) ∼ (∪∩z) –

r is a relation iff its members are ordered pairs –
Relation r := ∀ z, z ∈ r -> ∃ x y, z = [x,y] –

relation inverse to r r−1

Inverse r := \{\ λ x y, [y,x] ∈ r \}\ r−1

f is a function –
Function f := Relation f –

/\ (∀ x y z, [x,y] ∈ f -> [x,z] ∈ f -> y = z)

domain of the class f domain f
Domain f := \{ λ x, ∃ y, [x,y] ∈ f \} dom(f)

range of the class f range f
Range f := \{ λ y, ∃ x, [x,y] ∈ f \} ran(f)

value of f at x or image of x under f f(x)
Value f x := ∩(\{ λ y, [x,y] ∈ f \}) f[x]

f is a 1-1 function (bijective function) –
Function1_1 f := Function f /\ Function (f−1) –

class consisting of functions yx

whose domain is x and range is contained in y
Exponent y x := –

\{ λ f, Function f /\ dom(f) = x /\ ran(f) ⊂ y \}

cartesian product of x and y x × y

4 All definitions are defined with the command “Definition”.
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Cartesian x y := \{\ λ u v, u ∈ x /\ v ∈ y \}\ x × y

restriction of f to x f |x
Restriction f x := f ∩ (x × μ) f|(x)

x is r-related to y or x r-precedes y xry
Rrelation x r y := [x,y] ∈ r –

r connects x (trichotomy) –
Connect r x := ∀ u v, u ∈ x -> v ∈ x –

-> (Rrelation u r v) \/ (Rrelation v r u) \/ (u = v)

x is full (each member of a member of x is a member of x) –
Full x := ∀ m, m ∈ x -> m ⊂ x –

E is the ∈-relation E
E := \{\ λ x y, x ∈ y \}\ E

x is an ordinal –
Ordinal x := Connect E x /\ Full x –

class consisting of all ordinal numbers5 R
R := \{ λ x, Ordinal x \} R

x is an ordinal number if and only if x ∈ R –
Ordinal_Number x := x ∈ R –

successor of x x′; x + 1
PlusOne x := x ∪ [x] –

there exists a 1-1 function between x and y; x ≈ y
x is equivalent (equipotent) to y; x and y are equipollent
Equivalent x y := x ≈ y

∃ f, Function1_1 f /\ dom(f) = x /\ ran(f) = y

x is a cardinal number –
Cardinal_Number x := Ordinal_Number x –

/\ (∀ y, y ∈ R -> y ∈ x -> ∼ (x ≈ y))

class consisting of all cardinal numbers C
C := \{ λ x, Cardinal_Number x \} C

cardinality function that maps a set to its cardinality P
P := \{\ λ x y, x ≈ y /\ y ∈ C \}\ P

set of (non-negative) integers (i.e., set of natural numbers) ω
ω := \{ λ x, Integer x \} ω

x is finite –
Finite x := P[x] ∈ ω –
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Abstract. Boolean Control Networks (BCNs) are extensively employed
for modelling biological systems, attracting considerable attention from
biologists and systems scientists, in particularly, on the control theory
of BCNs. This paper begins by demonstrating an erroneous definition
of a specific property known as single-experiment observability, which
was intended to represent the solvability of the BCNs’ single-experiment
observation problem. Subsequently, we propose a novel form of observ-
ability to redefine this property. With this new definition, the determina-
tion of initial states for larger sets of BCNs can now be achieved through
a single experiment. Furthermore, we present a verification algorithm
designed for our definition, which exhibits lower computational complex-
ity compared to the algorithms used for verifying the previous definition
of BCNs’ single-experiment observability.
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1 Introduction

In the 1960s, Nobel Prize laureates Jacob and Monod proposed “Any cell con-
tains several regulatory genes that act as switches and can turn one another on
and off” [10], leading to the development of Boolean networks (BNs) [11]. BNs
model biological systems using binary variables to represent genes and Boolean
functions to describe their regulatory relationships. Boolean control networks
(BCNs) extend BNs by incorporating external regulations and distinguishing
between input, state, and output nodes [9]. BCNs are used in analyzing signal-
ing networks [12,13], drug target discovery [2], and solving evasion problems [19].
It is worth mentioning that BCNs, as a special variant of finite state machines
(FSMs), have the set of initial states being the same as the set of states. Research
on the control theory of BCNs can be transferred to FSMs [24], and FSMs are
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an important and commonly used tool for modeling system behavior in formal
methods.

The study of control theory in BCNs has garnered significant interest, result-
ing in various proposed problems for real-life scenarios [1,3–7,14–16,18,28,29].
Tackling these problems generally involves four steps:

1. The real-life problem is formalized as a BCN’s control-theoretic problem.
2. An algorithm is devised to solve the control-theoretic problem.
3. The problem’s solvability is formalized as a control-theoretic property, speci-

fying the conditions a BCN must meet for the solution algorithm to succeed.
4. A verification algorithm is designed to check if a given BCN satisfies the

control-theoretic property.

As can be seen from the four steps above, ensuring correct control-theoretic
properties is vital for solving problems in BCNs. However, we show in this work
that the current definition of single-experiment observability of BCNs is incorrect
and needs revision. Redefining this property can improve its understanding and
applicability in BCNs.

The observation problem, crucial for the quantitative analysis and identifica-
tion of BCNs, remains a relevant and active topic [3,5,7,27,28,30,31]. It involves
determining the initial state of a BCN by manipulating its inputs and observing
its outputs, given knowledge of its updating rules [27]. This problem is divided
into three sub-problems: multiple-experiment, single-experiment, and arbitrary-
experiment observation problems. These sub-problems explore scenarios where
(1) the input can be controlled and the initial state reset, (2) the input can
be controlled but the initial state cannot be reset, and (3) the input cannot
be controlled. The significance of the observability issue is manifestly evident in
practical applications, such as in the context of gene regulatory networks that are
amenable to modeling via BCNs [11], where direct measurement of all internal
states is typically unattainable. The principle of observability enables the esti-
mation and prognosis of the system’s state from observable outputs, which is of
paramount importance for the formulation of diagnostic and therapeutic strate-
gies. To address these, four types of observability have been proposed: Type-I, II,
III, & IV observability [3,5,7,28], each providing distinct approaches and insights
for solving the observation problem under various constraints [21].

Type-I observability in BCNs means a BCN is observable if, for any initial
state, there exists an input sequence that can uniquely identify it from all other
initial states [3]. Type-II observability, however, requires that for any two distinct
initial states, there exists an input sequence to distinguish between them [28].
Initially, Type-I observability was proposed for scenarios where the BCN’s input
can be controlled and the initial state can be reset. However, it was later replaced
by Type-II observability because it is easier to satisfy [27]. In scenarios where the
input can be controlled and the initial state can be reset, multiple experiments
can be conducted to determine the initial state, hence Type-II observability is
also known as multiple-experiment observability. As a result, Type-I observability
became known as strong multiple-experiment observability because it imposes a
stronger condition than Type-II observability.
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In situations where the BCN’s input can be controlled but the initial state
cannot be reset, the initial state can only be determined through a single experi-
ment, as it is not feasible to reset the initial state for repeated trials. This scenario
is known as single-experiment observability [27]. Type-III observability formalizes
this concept, stating that a BCN is observable if there exists an input sequence
that can distinguish all possible initial states [5]. When the BCN’s input cannot
be controlled, the observation problem is addressed by Type-IV observability. This
type states that a BCN is observable if any sufficiently long input sequence can
distinguish all distinct initial states [7]. This property is referred to as arbitrary-
experiment observability because the initial state can only be determined by
observing outputs without controlling inputs.

The initial state determination algorithm for Type-III observability involves
running a BCN with an input sequence that distinguishes all initial states and
then determining the initial state based on the output sequence [27]. However,
we found that this algorithm fails for certain BCNs. In contrast, we developed
a novel algorithm that can accurately determine their initial states in a single
experiment. This suggests that single-experiment observability should not be
defined by Type-III observability. Therefore, we propose a new type called Type-V
observability to redefine single-experiment observability. With Type-V observabil-
ity, it is possible to determine the initial states of a broader class of BCNs in just
one experiment. Moreover, single-experiment observability is crucial for solving
the identification problem of BCNs as the sufficient and necessary condition for
identifiability involves a combination of controllability and it [5,20].

Fig. 1. Relations among different types of observability (elliptical areas labeled as Type-
(I, II, III, IV, and V) represent the sets of BCNs that are Type-(I, II, III, IV, and V)
observable, respectively; area U represents the set of all BCNs).
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The verification algorithm plays a crucial role in researching the observ-
ability of BCNs. For instance, to determine the initial state using the Type-III
observability algorithm, we first need a verification algorithm to assess if the BCN
satisfies Type-III observability. This verification algorithm also helps find an input
sequence that can distinguish all initial states of the BCN. To advance the study
of single-experiment observability, we further develop a verification algorithm for
Type-V observability in this paper. This algorithm has lower computational com-
plexity compared to those for Type-III observability. Comparing the verification
algorithms for these two types of observability further highlights the advantages
of Type-V observability.

Outline of the Paper. After the introduction, Sect. 2 presents the required
notations and the formal definition of BCNs. In Sect. 3, Type-V observability is
formally defined, and we present our novel solution algorithm for addressing the
single-experiment observation problem in BCNs. Section 4 offers a verification
algorithm for Type-V observability and analyzes its computational complexity.
Finally, in Sect. 5, we summarize the findings and discuss potential avenues for
future research.

2 Preliminaries

First, we introduce several essential notations in this section. It is important
to note that, to maintain coherence in the notation and definitions used in our
research, the notation and definitions of certain properties in this paper remain
consistent with those used in our article [21] on the reconstructibility of BCNs.

– 2A: the power set of set A,
– |A |: the cardinality of set A,
– B: the set of Boolean values {0, 1},
– B

n: the n-dimensional Boolean vector space,
– T: the set representing the discrete time domain which is denoted by the set

of natural numbers,
– vi

2x : the x-dimensional Boolean vector whose decimal value is equal to i,
– V2x : the set {v0

2x , . . . , v2x−1
2x } of Boolean vectors.

Next, we present the formal definition of Boolean control networks (BCNs).
A BCN can be described by the following two equations [9]:

s(t + 1) = σ(i(t), s(t))
o(t) = ρ(s(t))

(1)

where t ∈ T; i(t) ∈ B
�, s(t) ∈ B

m, and o(t) ∈ B
n denote the input vector,

state vector, and output vector at time t, respectively; σ : B� × B
m �→ B

m and
ρ : B

m �→ B
n are logical functions determining the state and output of the

network. Therefore, the relation between the inputs, states, and outputs of a
BCN can be illustrated in Fig. 2, where 0, 1, . . . stand for time steps, i(0), i(1), . . .
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represent inputs, s(0), s(1), . . . represent states, o(0), o(1), . . . represent outputs,
and arrows represent dependence among inputs, states and outputs. Moreover,
as we represent a x-dimensional Boolean vector whose decimal value is equal
to i in the form vi

2x , the input set B
�, state set B

m, and output set B
n can be

replaced by VL, VM , and VN , respectively, where L = 2�, M = 2m, and N = 2n.
To analyze the control-theoretic properties of BCNs, we define the following

two classes of functions to represent the relationship between the input sequence,
output sequence, and state sequence of a BCN.

F [t0,t] : VM × (VL)
t−t0+1 �→ (VM )t−t0+2

,

F [t0,t](s(t0), I[t0, t]) = s(t0) . . . s(t + 1),

H [t0,t] : VM × (VL)
t−t0+1 �→ (VN )t−t0+2

,

H [t0,t](s(t0), I[t0, t]) = o(t0) . . . o(t + 1),

(2)

where t ≥ t0, I[t0, t] ∈ (VL)
t−t0+1 denotes the input sequence i(t0) . . . i(t) within

the time interval [t0, t]. For every state s(p) (t0 < p ≤ t+1) in the state sequence
s(t0) . . . s(t+1), s(p) = σ(i(p−1), s(p−1)). For the output sequence o(t0) . . . o(t+
1), every o(p) in it satisfies o(p) = ρ(s(p)).

Intuitively, the above two classes of functions describe the relationships
among the input sequence I[t0, t], the state sequence s(t0) . . . s(t + 1), and the
output sequence o(t0) . . . o(t+1) within the time interval [t0, t+1]. They gener-
alize the two classes of functions given in [23] for observability, where only the
special case of F [0,t] and H [0,t] is considered. These extensions will be helpful
when we define Type-V observability. Moreover, I[t0, t] would be replaced by I[t]
when t0 = 0 for the sake of conciseness in the following sections.

Fig. 2. An illustration of the relationships between inputs, states, and outputs of BCNs.

3 Observability of BCNs

In this section, we redefine the concept of single-experiment observability for
BCNs by introducing and formally defining Type-V observability.
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3.1 Problems in Existing Definitions

Before doing so, we will first present the existing definition of single-experiment
observability (Type-III observability) and explain why it is considered incorrect.

Definition 1 (Type-III observability [5]). A BCN satisfies Type-III observ-
ability if there exists an input sequence I[p] for some p ∈ T, such that for any
two distinct states s, s′ ∈ VM , H [0,p](s′, I[p]) �= H [0,p](s, I[p]).

Certain researchers consider Type-III observability as the single-experiment
observability for BCNs because they argue that the following straightforward
algorithm is the only method to determine a BCN’s initial state in a single
experiment (this conclusion is inferred from [25]). In this paper, we present all
solution algorithms for the observation problem of BCNs by outlining their pri-
mary steps, as demonstrated in the following example.

(Step 1) Feed a BCN an input sequence I[p] that distinguishes all 2m distinct
initial states of this BCN, and execute the network to generate its output
sequence o(0) . . . o(p + 1).

(Step 2) Return the BCN’s initial state s(0) that satisfies H [0,p](s(0), I[p]) =
o(0) . . . o(p + 1).

The algorithm described above determines the initial state s(0) of the BCN
using the input sequence I[p] and the output sequence o(0) . . . o(p+1). This algo-
rithm relies on the input sequence I[p] distinguishing all 2m distinct initial states
of the BCN. For this algorithm to be effective, the condition H [0,p](s′, I[p]) �=
H [0,p](s, I[p]) must hold for any two distinct states s and s′ of the BCN. How-
ever, we found certain BCNs(e.g., Table 1) where the existing algorithm fails to
accurately determine initial states. As a result, we have developed a new algo-
rithm that successfully determines the initial states of these BCNs in a single
experiment.

Example 1. The BCN as shown in Table 1 does not satisfy Type-III observability,
because for any p ∈ T,

– for any input sequence I[p] with the prefix v0
2 , e.g., v0

2v
1
2 ,

H [0,p](v1
8 , I[p]) = H [0,p](v2

8 , I[p]);
– for any input sequence I[p] with the prefix v1

2 , e.g., v1
2v

1
2 ,

H [0,p](v6
8 , I[p]) = H [0,p](v7

8 , I[p]).

Therefore, for any p ∈ T, there is not any input sequence I[p] which satisfies
that for any two distinct states s, s′ ∈ V8, H [0,p](s′, I[p]) �= H [0,p](s, I[p]).
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Table 1. A BCN used to illustrate various concepts, showing how the value of s(t+1)
is determined by the values of s(t) (row dimension) and i(t) (column dimension), and
how the value of o(t) is determined solely by the value of s(t), being independent of
the value of i(t).

s(t) v0
8 v1

8 v2
8 v3

8 v4
8 v5

8 v6
8 v7

8 i(t)

v2
8 v3

8 v3
8 v6

8 v1
8 v3

8 v4
8 v3

8 v0
2

s(t + 1)
v7
8 v5

8 v1
8 v4

8 v2
8 v6

8 v0
8 v0

8 v1
2

o(t) v0
4 v1

4 v1
4 v1

4 v2
4 v2

4 v3
4 v3

4 ·

3.2 Proposal and Justification of a New Definition

To define single-experiment observability for BCNs, we introduce the concept of
the state set Sps(t), which comprises all possible valuations of the state s(t) that
can be inferred for a BCN at time step t. In other words, the state set Sps(t)
is derived from the historical information of the BCN’s inputs and outputs up
to time t. We illustrate the process of calculating Sps(t) for a BCN through the
following steps.

First, we define the function ζ(S, i, o) to represent how the state set Sps(t)
for a BCN is calculated using its state set Sps(t − 1), input i(t − 1), and output
o(t). However, before defining the function ζ(S, i, o), we need to introduce the
function ξ(i, s):

ξ : (VL ∪ {ε}) × VM �→ VM ,

ξ(i, s) =
{

σ(i, s) i �= ε
s i = ε

.
(3)

The function ξ(i, s) is defined to capture how the state s of the BCN is affected
by its input i. Unlike the BCN’s updating function s(t + 1) = σ(i(t), s(t)), this
function ξ(i, s) specifically captures how the state s changes when the input i is
absent (i.e., i = ε).

Next, we define the function ζ(S, i, o) as follows:

ζ : 2VM × (VL ∪ {ε}) × (VN ∪ {ε}) �→ 2VM

ζ(S, i, o) =
{{ξ(i, s) | s ∈ S, ρ(ξ(i, s)) = o} o �= ε

{ξ(i, s) | s ∈ S} o = ε

(4)

where ε presents the absence of input or output.
The function ζ(S, i, o) outlines how to calculate the state set Sps(t) for a BCN.

When t = 0, we can only utilize the initial output o(0) to determine the state
set Sps(t) for the BCN. Therefore, the BCN’s state set Sps(t) = ζ(VM , ε, o(0)),
which means Sps(t) (or Sps(0)) includes all initial states that can produce the
initial output o(0). When t > 0, the BCN’s state set Sps(t) is determined by
its state set Sps(t − 1), input i(t − 1), and output o(t). Hence, the set Sps(t) =
ζ(Sps(t − 1), i(t − 1), o(t)), which implies that for every state s in Sps(t), there
exists a state s′ in Sps(t − 1) such that s = σ(i(t − 1), s′). Furthermore, all states
belonging to the state set Sps(t) should be capable of generating the output o(t).
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Second, building upon the previous concept, we recursively define the follow-
ing class of functions G[t](I[t−1], o(0) . . . o(t)) to represent how to determine the
set Sps(t) for a BCN by analyzing its input sequence I[t−1] and output sequence
o(0) . . . o(t). In other words, we define Sps(t) = G[t](I[t − 1], o(0) . . . o(t)). This
recursive definition allows us to determine the state set Sps(t) at each time step
t by considering the input sequence I[t − 1] and the output sequence o(0) . . . o(t)
of the BCN.

G[t] : VL
t × VN

t+1 �→ 2VM (5)

These functions satisfy the following conditions.

– When t = 0, I[t − 1] = ε,

G[t](I[t − 1], o(0) . . . o(t)) = ζ(VM , ε, o(0)).

– When t > 0,

G[t](I[t − 1], o(0) . . . o(t)) = ζ(G[t−1](I[t − 2], o(0) . . . o(t − 1)), i(t − 1), o(t)).

Third, with the introduction of the state set Sps(t), we can address the single-
experiment observation problem of BCNs more clearly. In this problem, we per-
form a single experiment to generate a set of input-output sequences from a BCN,
aiming to determine the BCN’s initial state. We conclude that the state s(t) of
a BCN can be determined within a finite number of time steps k by conducting
a single experiment if and only if the following conditions are satisfied.

– |Sps(t + k)| = 1, i.e. the BCN’s s(t + k) is determined.
– For every t0 such that t + 1 ≤ t0 ≤ t + k, and for every state s in Sps(t0),

there exists only one state s′ in Sps(t0 − 1) that satisfies s = σ(i(t0 − 1), s′),
ensuring that the BCN’s state s(t0 − 1) can be uniquely determined by its
state s(t0) and input i(t0 − 1). By following this idea, the BCN’s state s(t)
can be uniquely determined step by step, starting from its state s(t+ k) and
utilizing the input sequence I[t, t + k − 1].

These conditions are both necessary for determining the initial state of a
BCN in a single experiment.

– Necessity of the first condition: If the state s(t) of a BCN is determined, it
implies that its state s(t+k) can be determined step by step using the update
function σ and the input sequence I[t, t+k −1]. Therefore, if the BCN’s state
s(t+k) cannot be guaranteed to be determined, it is impossible to ensure that
the state s(t) can be determined in k time steps. The determination of the
initial state relies on the availability of the state at time t + k, and without
it, the determination of the state at time t becomes uncertain.

– Necessity of the second condition: If the second condition is not guaranteed
to be met, it implies that there is no assurance that the BCN’s state s(t)
can be uniquely determined step by step using the state s(t + k) and the
input sequence I[t, t + k − 1]. In this case, there may be multiple possible
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previous states leading to the same current state, introducing ambiguity in
the backward propagation. Consequently, even if the state s(t + k) can be
determined, there is no guarantee that the BCN’s state s(t) can be uniquely
determined in k time steps through a single experiment.

Based on the aforementioned conclusion, we introduce the concept of the
set of state sets, denoted as SetS(k). This set represents the collection of state
sets where, for each state set S belonging to SetS(k), it satisfies the condition
that it takes k time steps to determine the state s(t) of a BCN through a single
experiment when its state set Sps(t) is equal to S. The determination of SetS(k)
can be achieved through the following recursive steps.

– When k = 0, then SetS(k) = {S ∈ 2VM ||S| = 1}.
– When k > 0, then

SetS(k) = {S ∈ (2VM − ⋃k−1
p=0 SetS(p))|∃i ∈ VL · (|ζ(S, i, ε)| = |S|)&(∀o ∈

VN · ∃p ≤ (k − 1) · ζ(S, i, o) ∈ SetS(p))}.

Intuitively, when |S| = |Sps(t)| = 1, i.e. s(t) is determined, we need 0 time
step to determine s(t). Thus, we set SetS(k) = {S ∈ 2VM ||S| = 1} when k = 0.
When k > 0, we use the sets SetS(0),. . ., SetS(k − 1) that have been defined
to define the set SetS(k). Firstly, as the set SetS(k) should not intersect with
the sets SetS(0),. . ., SetS(k − 1), we have for every state set S ∈ SetS(k), the
condition S ∈ (2VM − ⋃k−1

p=0 SetS(p)) should be met. Secondly, as the BCN’s state
s(t) should be determined by its state s(t + 1) and input i(t), those following
conditions also need to be satisfied as we discussed in the previous paragraph.

We can define the function Γ (S) to represent the number of time steps
required to determine the state s(t) of a BCN through a single experiment,
given that its state set Sps(t) = S. The function Γ (S) provides the time step
count needed for state determination in this scenario.

Γ : (2VM − {∅}) �→ (T ∪ {∞}) (6)

satisfies the following conditions:

– If there exists a finite number k which satisfies that S ∈ SetS(k), Γ (S) = k.
– Otherwise, Γ (S) = ∞.

In the previous paragraphs, we explored the determination of whether the
state s(t) of a BCN can be established within a finite number of time steps
through a single experiment, given its state set Sps(t). Extending this concept,
we can consider all possible Sps(0) for a BCN to determine if its initial state s(0)
can be guaranteed to be determined in one experiment. This leads us to define
the Type-V observability as the single-experiment observability of BCNs.

Definition 2 (Type-V Observability). A BCN satisfies Type-V observability
if for every possible Sps(0) of this BCN, Γ (Sps(0)) �= ∞.

In order to address the single-experiment observation problem, we present
a novel solution algorithm. For this purpose, we define the function ψ(S) to
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represent the set of inputs available at time t when executing the algorithm to
determine the initial state of a BCN, given that the BCN’s Sps(t) is equal to S.
The function ψ(S) provides the set of selectable inputs during the execution of
the algorithm for initial state determination.

ψ : (2VM − ∅) �→ 2VL

ψ(S) = {i ∈ VL| |ζ(S, i, ε)| = |S|,∀o ∈ VN

ζ(S, i, o) �= ∅ → Γ (ζ(S, i, o)) �= ∞}
(7)

The definition of function ψ(S) is obtained from the conditions mentioned in
the definition of Γ (S). Then, for a BCN with Type-V observability, we provide
the following algorithm with four main steps to determine its initial state.

(Step 1) Obtain the state set Sps(0) of this BCN by its initial output o(0), i.e.
Sps(0) := ζ(VM , ε, o(0)), and set the set variable S by Sps(0), i.e. S := Sps(0).

(Step 2) Select an input i which satisfies the formula

max
o′∈{o|ζ(S,i,o) �=∅}

Γ (ζ(S, i, o′)) + 1 = Γ (S)

from ψ(S), and simulate the BCN with the input i to generate a new output
o(t).

(Step 3) Determine the new Sps(t) by the input i, output o(t), and set variable
S, i.e. Sps(t) := ζ(S, i, o(t)), and update the set variable S by Sps(t), i.e.
S := Sps(t).

(Step 4) If |S| = 1, then return s(0) satisfying H [0,t−1](s(0), I[t − 1]) =
o(0) . . . o(t) as the initial state of this BCN. Otherwise, update t, i.e. t := t+1,
and go to Step 2.

As discussed in the previous paragraphs, the condition |ζ(S, i, ε)| = |S| is
consistently satisfied at each time step. This guarantees that the initial state s(0)
of the studied BCN can be determined based on the input sequence I[t − 1] and
the output sequence o(0) . . . o(t), once the state s(t) is determined. Furthermore,
the equation

max
o′∈{o|ζ(S,i,o) �=∅}

Γ (ζ(S, i, o′)) + 1 = Γ (S)

being satisfied at each time step ensures that the state s(t) of the BCN can
be determined. These observations highlight the significance of these conditions
in enabling the determination of the state of the BCN at each time step, ulti-
mately leading to the determination of the initial state for a BCN with Type-V
observability.

Compared to the algorithm for solving the single-experiment observation
problem associated with Type-III observability, the algorithm described above
differs in that it does not require an input sequence capable of distinguishing all
initial states. Instead, it relies on a strategy to determine the input i(t) of the
BCN at each time step based on the known inputs and outputs of the BCN. In
other words, in the above algorithm, the BCN’s inputs i(t) are not predetermined
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but determined dynamically based on the BCN’s state set Sps(t), which, in turn,
is determined by the BCN’s inputs and outputs. This characteristic allows the
above algorithm to determine the initial states of a broader range of BCNs
(including cases illustrated in Table 1) compared to the algorithm associated
with Type-III observability. This distinction emphasizes why the above algorithm
can effectively determine the initial states of various BCNs by leveraging the
dynamic determination of inputs based on the BCN’s state set, contributing to
a more extensive applicability in practice.

Example 2. Continuing with the BCN shown in Table 1, we have

– Γ (Sps(0)) = 0, when Sps(0) = ζ(VM , ε, o(0)) = ζ(V8, ε, v
0
4) = {v0

8};
– Γ (Sps(0)) = 2, when Sps(0) = ζ(VM , ε, o(0)) = ζ(V8, ε, v

1
4) = {v1

8 , v
2
8 , v

3
8};

– Γ (Sps(0)) = 1, when Sps(0) = ζ(VM , ε, o(0)) = ζ(V8, ε, v
2
4) = {v4

8 , v
5
8};

– Γ (Sps(0)) = 1, when Sps(0) = ζ(VM , ε, o(0)) = ζ(V8, ε, v
3
4) = {v6

8 , v
7
8}.

Therefore, this BCN satisfies Type-V observability and the initial state of it
can be determined by the above algorithm.

To further demonstrate that Type-V observability is the appropriate definition
for single-experiment observability in BCNs, we can provide a formal comparison
with Type-III observability through the proof of the following theorem.

Theorem 1. Type-III observability implies Type-V observability.

Proof. We present a proposition that for a set Sps(x) of a BCN’s possible state
valuations at time x, if there exists an input sequence I[x, p] for some p ≥ x,
such that for any two distinct states s(x), s′(x) ∈ Sps(x), H [x,p](s′(x), I[x, p]) �=
H [x,p](s(x), I[x, p]) holds, then Γ (Sps(x)) �= ∞. We prove this by induction.

– When p = x, if for any two distinct states s(x), s′(x) ∈ Sps(x), we have
H [x,p](s′(x), I[x, p]) �= H [x,p](s(x), I[x, p]), then the input i(x) which is equal
to I[x, p] satisfies

• |ζ(Sps(x), i(x), ε)| = |Sps(x)|, and
• for every non-empty ζ(Sps(x), i(x), o(x+1)), Γ (ζ(Sps(x), i(x), o(x+1))) =

0 holds.
Therefore, Γ (Sps(x)) = 1, i.e. the above proposition holds when p = x.

– Assuming that the above proposition holds when p = x, . . . , (x + k). Then,
when p = x + k + 1, if for any distinct states s(x), s′(x) ∈ Sps(x), we have
H [x,p](s′(x), I[x, p]) �= H [x,p](s(x), I[x, p]), then for Sps(x), the input i(x) which
is the first input of I[x, p] satisfies

• |ζ(Sps(x), i(x), ε)| = |Sps(x)|, and
• for every non-empty ζ(Sps(x), i(x), o(x + 1)),

Γ (ζ(Sps(x), i(x), o(x + 1))) �= ∞,
i.e. Γ (Sps(x)) �= ∞. Thus the proposition holds when p = x+k+1 if it holds
when p = x, . . . , (x + k).
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Therefore, the above proposition holds for any p ≥ x. Secondly, if a BCN
satisfies Type-III observability, then there exists an input sequence I[p] for some
p > 0, such that for any two distinct states s(0), s′(0) ∈ VM , H [0,p](s′(0), I[p]) �=
H [0,p](s(0), I[p]) holds, thus for every possible Sps(0), Γ (Sps(0)) �= ∞. Therefore,
Type-III observability implies Type-V observability.

The aforementioned theorem demonstrates that any BCN satisfying Type-III
observability also satisfies Type-V observability. However, the BCN presented in
Table 1 illustrates that not all BCNs satisfying Type-V observability would nec-
essarily satisfy Type-III observability. Therefore, we can conclude that for BCNs,
Type-V observability is comparatively easier to satisfy than Type-III observabil-
ity. Moreover, by considering the discussion on the interrelationships among the
four properties of observability (Type-I, II, III & IV) presented in paper [27], we
can ascertain the overall relationship among all five types of observability, as
depicted in Fig. 1 in Sect. 1).

Remark. It is worth noting that another type of observability known as Output-
Feedback observability ( [8]) has been proposed to capture the property required
for a BCN to enable the execution of an output-feedback algorithm to deter-
mine the initial state. It is equivalent to Type-V observability. However, it is not
mentioned in [8] that Output-Feedback observability represents a new definition
of single-experiment observability for BCNs. In contrast, our work provides a
detailed discussion on why Type-V observability precisely captures the concept of
single-experiment observability for BCNs. This constitutes the first part of our
contribution, where we thoroughly explain how Type-V observability addresses
the requirement of determining the initial state through a single experiment.
Furthermore, observability plays a pivotal role in addressing the problem of
identifying BCNs because the integration of single-experiment observability and
controllability is a sufficient condition for identifiability [5]. Therefore, clarifying
the concept of single-experiment observability in this paper is also crucial for
solving the identification problem of BCNs.

4 Verification of Type-V Observability

In this section, we present a verification algorithm to establish the Type-V observ-
ability of the considered BCN. The algorithm aims to determine whether every
possible Sps(0) of the BCN satisfies Γ (Sps(0)) �= ∞. Additionally, it provides
a strategy for determining the input to execute the BCN at each time step,
enabling the determination of the BCN’s initial state using the algorithm intro-
duced in Sect. 3. To solve the verification problem, we first define an input-
labelled graph G = (V, E ,L) for BCNs.

Definition 3 (Input-labelled graph). Let V, E and L be the vertex set, edge
set, and labelling function of an input-labelled graph G = (V, E ,L). G is called
the input-labelled graph of a BCN if
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– V = {S ∈ (
⋃

o∈VN

2ζ(VM ,ε,o) − ∅) | Γ (S) �= ∞};
– E = {(S1,S2) ∈ V × V | |S1| > 1,S2 ∈ {ζ(S1, i, o) | i ∈ ψ(S1), o ∈ VN}};
– L : E �→ 2VL , L(S1,S2) = {i ∈ ψ(S1) | S2 ∈ {ζ(S1, i, o) | o ∈ VN}}.

Intuitively, in the input-labelled graph G = (V, E ,L) of a BCN, the vertex set
V represents the set of all state sets that satisfy Γ (S) �= ∞. Furthermore, for any
two distinct states s, s′ ∈ S, they yield the same output. The edge set E captures
the relationships between the state sets belonging to V. The labelling function L
assigns a set of inputs to each edge e ∈ E in the graph. In this way, the Type-V
observability of a BCN can be verified by constructing its input-labelled graph
G = (V, E ,L) and examining whether every possible Sps(0) belongs to the vertex
set V. Additionally, the strategy for determining the input to execute the BCN
at each time step can be derived from its input-labelled graph.

After presenting the main idea of our verification algorithm, we now pro-
vide additional details on constructing and checking the input-labelled graph
for a BCN. Firstly, considering that the function Γ (S) is recursively defined, we
construct the vertices consisting of smaller state sets before constructing those
consisting of larger state sets in the process of constructing the input-labelled
graph. Secondly, we introduce two lemmas regarding the functions Γ (S) and
ψ(S) to provide further insight into the design of our algorithm.

Lemma 1. For any two non-empty state sets S1 and S2, if S1 ⊆ S2 and Γ (S2) �=
∞, then Γ (S1) �= ∞.

Lemma 2. For any two non-empty state sets S1 and S2, if S1 ⊆ S2 and Γ (S2) �=
∞, then ψ(S2) ⊆ ψ(S1).

Due to space constraints, we omit the proofs of the aforementioned lemmas.
Based on Lemma 1, if we encounter a set of states S that does not belong to
V, it implies the existence of an output o ∈ VN such that S ⊆ ζ(VM , ε, o),
leading to Γ (ζ(VM , ε, o)) = ∞. Consequently, the BCN fails to satisfy Type-V
observability. In such cases, there is no need to continue constructing the input-
labelled graph, as the verification for the BCN’s Type-V observability has already
been established.

Moreover, Lemma 2 demonstrates that once we have determined ψ(S′) for
every S′ ⊂ S, we can approximate the scope of ψ(S) for the set S by calculating⋂
S′⊂S

ψ(S′). This allows for an easier determination of Γ (S).

After introducing the principles of our designed verification algorithm, we
now present its detailed description in Algorithm 1. To illustrate how Algorithm 1
works, we use the BCN provided in Table 1 as an example to demonstrate the
steps of the algorithm. In summary, Algorithm 1 constructs the input-labelled
graph (depicted in Fig. 3) of the BCN in a layer-by-layer manner, starting from
the bottom and moving upwards. We now provide additional details about Algo-
rithm 1.

Let us first explain Algorithm 2, which is called within Algorithm 1. Its
purpose is to construct the set of vertices based on the number z of states that
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the vertices contain. Since any two distinct states in a vertex should produce the
same output, we use the formula

V er_arr = {S ∈
⋃

o∈VN

2ζ(VM ,ε,o)| |S| = z}

to obtain the set V er_arr (line 2). If V er_arr is empty, Algorithm 2 returns
Null (lines 3–4). If V er_arr is not empty, Algorithm 2 returns V er_arr (lines
5–6). For the BCN in Table 1, when z = 1, the set of vertices constructed by
Algorithm 2 contains the vertices at the bottom of the graph shown in Fig. 3.
When z = 4, Algorithm 2 returns Null.

Fig. 3. The input-labelled graph, where the orange and blue edges are labelled with
{v0

2} and {v1
2}, respectively. (Color figure online)

Next, we introduce Algorithm 1. This algorithm calls Algorithm 2 to con-
struct the set V er_arr of vertices based on the number z of states that the
vertices contain. It then checks whether the vertices in V er_arr belong to the
input-labelled graph of the BCN or not. When z is equal to 1, it is known directly
that the vertices returned by Algorithm 2 belong to the input-labelled graph of
the BCN based on the definition of Γ (S). Therefore, Algorithm 1 starts check-
ing V er_arr when z is equal to 2 (lines 3–4). If Algorithm 2 returns Null, it
indicates that all possible initial state sets S(0) of the BCN have been checked,
implying that the BCN satisfies Type-V observability. In this case, Algorithm 1
returns the input-labelled graph of the BCN (lines 5, 22–24). In_arr represents
the input set to be checked for a vertex V er_arr[i]. When z is greater than 2,
Algorithm 1 uses the formula

In_arr =
⋂

S⊂V er_arr[i]

ψ(S)
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Algorithm 1. Verification algorithm for Type-V observability
Input: The updating rules of a BCN
Output: The input-labelled graph of this BCN
1: integer i, z = 1
2: array V er_arr[ ], In_arr[ ]
3: V er_arr =constructvertices(z)
4: V er_arr =constructvertices(++ z)
5: while (V er_arr! =Null) do
6: for (i = 0; i < arraysize(V er_arr); i ++) do
7: if (z == 2) then
8: In_arr = VL

9: else
10: In_arr=

⋂

S⊂V er_arr[i]

ψ(S)

11: end if
12: if (In_arr == ∅) then
13: Return Null
14: end if
15: Get ψ(V er_arr[i]) by In_arr and existing vertices
16: if (ψ(V er_arr[i])! = ∅) then
17: Build edges for V er_arr[i]
18: else
19: Return Null
20: end if
21: end for
22: V er_arr =constructvertices(++ z)
23: end while
24: Return constructvertices(− − z)

to obtain In_arr (lines 7–11) based on Lemma 2. Then, Algorithm 1 uses
In_arr to check the vertex V er_arr[i]. If In_arr is empty, it indicates that the
BCN does not satisfy Type-V observability according to Lemma 1. In this case,
Algorithm 1 returns Null (lines 12–14). If In_arr is not empty, Algorithm 1
checks the vertex V er_arr[i] and creates edges for it, as depicted in Fig. 3 (lines
15–20). From Fig. 3, we can observe that every possible initial state set Sps(0)
of the BCN in Table 1 belongs to the vertex set V of its input-labelled graph.
In Sect. 3, we established that this BCN satisfies Type-V observability. Thus, this
example confirms the correctness of our algorithm.

For a BCN with Type-V observability, with its input-labelled graph G =
(V, E ,L), a necessary strategy for determining its initial stat can be easily
obtained. We take the BCN in Table 1 as an example to illustrate this. For a
BCN with Type-V observability, the input-labelled graph G = (V, E ,L) provides
a crucial strategy to determine its initial state. To illustrate this, we consider
the BCN presented in Table 1.

Example 3. For this BCN, we first calculate the Γ (S) value for every state set
S in its input-labelled graph, starting from the bottom and moving upwards.
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Algorithm 2. constructvertices(integer z)
Input: The number of states z
Output: The vertices with z states producing the same output
1: array V er_arr[ ]
2: V er_arr = {S ∈ ⋃

o∈VN

2ζ(VM ,ε,o)| |S| = z}
3: if (V er_arr == ∅) then
4: Return Null
5: else
6: Return V er_arr
7: end if

The resulting values are shown in Table 2. Next, we construct a strategy for this
BCN, which is presented in Table 3. This strategy ensures that for every possible
state set S(t), the chosen input i(t) satisfies the following equation:

max
o′∈{o|ζ(Sps(t),i(t),o) �=∅}

Γ (ζ(Sps(t), i(t), o′)) + 1 = Γ (S(t))

This equation guarantees that the maximum value of Γ (ζ(Sps(t), i(t), o′)) for all
possible output values o′ that can be deduced from the state set Sps(t) using
input i(t) is equal to Γ (S(t)) minus one.

Table 2. The Γ (S) value of the state set S (|S| > 1) in the Fig. 3.

S {v1
8 , v

2
8} {v1

8 , v
3
8} {v2

8 , v3
8} {v4

8 , v
5
8} {v6

8 , v
7
8} {v1

8 , v
2
8 , v

3
8}

Γ (S) 1 1 1 1 1 2

Table 3. A strategy for the BCN in Table 1.

Sps(t) {v1
8 , v

2
8} {v1

8 , v
3
8} {v2

8 , v
3
8} {v4

8 , v5
8} {v6

8 , v
7
8} {v1

8 , v
2
8 , v3

8}
i(t) v1

2 v0
2 v1

2 v1
2 v0

2 v0
2

After presenting our algorithm for verifying the Type-V observability of BCNs,
we proceed to analyze the computational complexity of this algorithm. Given a
BCN with 	 input-nodes, m state-nodes, and n output-nodes, the input-labelled
graph of the BCN can have up to 22

m−1 vertices. This occurs when the BCN
satisfies Type-V observability, and there exists an output node o ∈ VN such that
|ζ(VM , ε, o)| = 2m − 1. Furthermore, each vertex needs to be checked at most 2�

times. Hence, the upper bound of the computational complexity for Algorithm 1
is O(22

m+�−1). In contrast, the computational complexity of the verification



294 G. Wu et al.

algorithms for Type-III observability is 22
2m−1� according to [25]. This comparison

of computational complexity highlights the advantages of Type-V observability
over Type-III observability when solving the single-experiment observation prob-
lem in BCNs. Moreover, due to our utilization of Lemma 1, the computational
complexity of Algorithm 1 matches the lower bound for any algorithm aiming to
verify Type-V observability, which is O(2�). This lower bound is achieved when
the BCN under study does not satisfy Type-V observability, and the first state
set V er_arr[i] to be checked does not satisfy ψ(V er_arr[i]) �= ∅. While for the
Output-Feedback observability, which is equivalent to Type-V observability but
defined differently, was investigated in [8], there appears to be a lack of research
on its verification algorithm. Thus, our proposed algorithm further advances the
study of Output-Feedback observability for BCNs.

5 Conclusions

In this paper, we have redefined single-experiment observability for BCNs, and
proposed an advanced verification algorithm tailored to this new observability
form. Our algorithm efficiently identifies initial states in BCNs using a single
experiment, surpassing existing methods. Our study provides a solution to the
challenging problem of single-experiment observation in BCNs. However, verify-
ing single-experiment observability for large-scale BCNs remains challenging due
to computational complexity. To address this, it is a viable approach to segment
a large-scale network into components [17,22] and subsequently investigate its
observability, with existing research having achieved relevant results within the
four existing categories of observability [26]. Consequently, we will pursue this
line of research in an attempt to resolve the problem. Additionally, engineering
the verification algorithm we designed and developing a toolkit to facilitate the
application of our results is also a direction of our future work.
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Abstract. Potential flow is a theoretical model that describes the move-
ment of a fluid, e.g., water or air in situations where viscosity and tur-
bulence are assumed to be negligible. This type of flow is often used as
an idealized model to describe the behavior of fluids in specific contexts,
such as in fluid dynamics and aerodynamics. In this paper, we present a
higher-order logic formalization of potential flows that are governed by
the Laplace equation. We focus on formally modeling fundamental flows
such as the uniform, source/sink, doublet, and vortex flows in the HOL
Light theorem prover. We then prove the validity of these exact potential
flow solutions of the Laplace equation. Moreover, we present the formal
verification of the linearity of the Laplace operator, which is essential to
apply the superposition principle. To demonstrate the practical effective-
ness of our formalization, we formally verify several applications such as
the Rankine oval, flow past a circular cylinder and flow past a rotating
circular cylinder, each of which involves combining these standard flows
using the superposition principle to model more complex fluid dynamics.

Keyword: Potential Flows, Partial Differential Equations, Laplace
Equation, Higher-Order Logic, Theorem Proving, HOL Light

1 Introduction

Potential flow theory [14] is a key concept in the discipline of fluid dynamics.
It uses harmonic functions to study a wide range of fluid-related phenomena
within the theoretical framework of this field of study. Potential flow describes
the velocity field as the gradient of a scalar function known as the velocity
potential. Moreover, it characterizes the flow as irrotational and incompressible
and provides valuable insights into fluid dynamics. This idealization is in close
approximation to real-world scenarios of practical importance. For instance, in
aerodynamics, this theory has played a pivotal role in developing analytical
models to understand airflow around airfoils, wings, and related aerodynamic
surfaces, which in turn facilitate the prediction of crucial aerodynamic forces
such as lifts [13].

The foundation of addressing aerodynamic problems lies in the equations
that govern the flow. While fluid motion is governed by the Navier-Stokes (NS)
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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equations [18], which is a vector equation that includes three different scalar
equations along with the conservation of the mass equation [19], their nonlin-
ear nature renders them challenging to solve [14]. Consequently, the Laplace
equation, which is a prevalent class of partial differential equations [17] emerges
as a preferred alternative, providing an exact representation of incompressible,
inviscid and irrotational flows. Unlike the NS equations, the use of the Laplace
equation is much easier than using fully viscous NS equations. This equation
forms the basis of potential flow theory, where both the stream function and
velocity potential, as algebraic functions satisfying the Laplace equation, can be
combined to construct flow fields. Moreover, the superposition of basic potential
flow solutions is a crucial step in the analysis of aerodynamic configurations.
This method leverages the linearity of the Laplace equation, enabling for the
construction of models that represent intricate scenarios by combining simpler
flow elements [16].

Due to the fundamental importance of the Laplace equation in physics,
applied mathematics, and engineering, numerous well-established analytical and
numerical techniques exist for solving this equation, especially in the field of
aerodynamics. These techniques are also useful in developing advanced com-
putational methods for determining potential flows around the complex three-
dimensional geometries common in modern aircraft design [13]. For instance,
the method of images [9] are applied to model potential flows around airfoils
and wings, where a combination of real and image sources helps satisfy the
no-flow boundary conditions on solid surfaces. On the other hand, numerical
techniques such as the panel methods [3] are computational models that sim-
plify the assumptions concerning the aerodynamic principles and characteristics
of airflow over an aircraft. Despite the prevalence of traditional techniques in
analyzing aerodynamic problems, there exists a notable concern regarding their
accuracy. For instance, paper-and-pencil methods carry a risk of human errors.
It is possible that a mathematical result may be misapplied when using a manual
method, as it is not possible to guarantee that all required assumptions are valid.
In regard to simulation tools, the accuracy of simulation results depends on var-
ious factors, including the precision of numerical techniques, and computational
issues may arise, especially in the context of large models.

In contrast, formal verification employs computer-based techniques for the
mathematical modeling, analysis, and verification of abstract and physical sys-
tems. A prominent technique in formal verification is higher-order logic (HOL)
theorem proving [11], which is an interactive approach that involves human-
machine collaboration for the development of correct proofs. Its expressive capa-
bilities are sufficient for the description of the majority of classical mathematical
theories, including differentiation, integration, higher transcendental functions,
and topological spaces. Given the fundamental role of potential flow theory in
the early stages of aircraft design, where it is used to predict the behavior of
airflow around wings, the safety-critical nature of potential flow applications
becomes evident. Therefore, it is imperative to employ robust verification tools
that can ensure the accuracy and reliability of these theoretical models.
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In this paper, we propose to use higher-order logic theorem proving for the
formalization of standard potential flows that are governed by the Laplace equa-
tion. We also provide the formal verification of these exact potential flow solu-
tions for the Laplace equation, along with their applications in aerodynamics.
While there exist some formalization work of other types of partial differential
equations, such as the wave equation [4], the heat equation [7] and the telegra-
pher’s equations [8], to the best of our knowledge, there is no formalization of
the Laplace equation in the literature. Therefore, the formal analysis of potential
flows governed by the Laplace equation using HOL theorem proving is the first
of its kind, which could be very useful for safety-critical applications.

The rest of the paper is organized as follows: Sect. 2 describes some prelimi-
nary details of the potential flow theory and the HOL Light theorem prover that
are necessary for understanding the rest of the paper. We present the formal-
ization of standard potential flows in Sect. 3. In Sect. 4, we provide the formal
verification of the validity of the exact potential flow solutions for the Laplace
equation. Sect. 5 provides the formal verification of the linearity of the Laplace
operator as well as the verification of more complicated flows that are constructed
by combining the standard potential flows. Finally, Sect. 6 concludes the paper.

2 Preliminaries

In this section, we briefly describe the HOL Light theorem prover as well as some
of the associated functions and symbols that are necessary for understanding the
rest of the paper. We also provide some background knowledge about potential
flow theory.

2.1 HOL Light Theorem Prover

Interactive theorem proving is a collaborative process between a machine and
a human user, where they work together interactively to generate a formal proof.
The use of theorem proving systems is common in the verification of both soft-
ware and hardware as well as in pure mathematics. For instance, a verification
engineer can manually build a logical model of the system and subsequently
verify the desired properties while providing guidance to the theorem proving
tool. Similarly, a mathematician can use theorem provers in the verification of
standard pure mathematical contexts. HOL Light [12], developed by Harrison,
is one of the theorem provers in the HOL family [11], characterized by its small
logical kernel. In HOL Light, the process of proving a theorem begins with the
user entering the theorem’s statement as the goal in a new proof. The proofs in
HOL Light rely on tactics that break down complex goals into more straightfor-
ward subgoals. Furthermore, HOL Light provides a variety of automated proof
procedures and proof assistants to assist users in guiding and completing their
proofs. In addition, users have the flexibility to craft and implement their own
personalized automation methods.

Table 1 provides the mathematical interpretations of some of the HOL Light
symbols and functions used in this paper.
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Table 1. HOL Light Symbols

HOL Light Symbols Standard Symbols Description

&a N → R Type casting from natural numbers to reals

&num {1, 2..} Positive integers data type

λx.t λx. t Function that maps x to t(x)

real R Real data type

@f Hilbert choice operator Returns f if it exists

atreal x Real net At real variable x

--x −x Unary negation of x

a / b
a

b
Division (a and b should have same type)

a pow b ab Real or complex power

2.2 Brief Review of Potential Flow Theory

Potential flow can be defined as steady, incompressible and irrotational flow. A
condition that is necessary and sufficient to identify a flow as irrotational:

−→∇ × −→
V = 0 (1)

This indicates that the velocity field V is a conservative vector field denoted by
the gradient of a scalar velocity potential function (φ):

−→
V =

−→∇φ (2)

If the velocity potential is known, then the velocity at any point can be deter-
mined using

u =
∂φ

∂x
, v =

∂φ

∂y
(3)

The irrotationality condition for two-dimensional flows vorticity is given by:

∂v

∂x
− ∂u

∂y
= ξ (4)

Here, ξ = 0 since the flow is irrotational.
Similarly, in the case of an incompressible flow, it follows from the continuity

equation that:
−→∇ .

−→
V =

∂u

∂x
+

∂u

∂y
= 0 (5)

The two-dimensional continuous flow is described by the stream function (for
incompressible flow) ψ, which determines the velocity at any point as:
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u =
∂ψ

∂y
, v = −∂ψ

∂x
(6)

Substituting Eqs. (3) and (6) into Eqs. (5) and (4), respectively, yields the con-
ditions for continuous irrotational flow:

∂2φ

∂x2
+

∂2φ

∂y2
= 0 =

∂2ψ

∂x2
+

∂2ψ

∂y2
(7)

which is the Laplace equation for the stream function and the velocity potential
in Cartesian coordinates [13]. The Laplace equation can also be written in polar
coordinates as:

∂2ψ

∂r2
+

1
r

∂ψ

∂r
+

1
r2

∂2ψ

∂θ2
= 0 (8)

Both the velocity potential (φ) and the stream function (ψ) are employed to
describe the flow field in fluid dynamics and they satisfy the Laplace equation.
There are notable similarities and differences between the stream function and
the velocity potential. For instance, while the stream function can be employed
to describe both rotational and irrotational flows, the velocity potential is only
defined for irrotational flow. On the other hand, the velocity potential is appli-
cable to three-dimensional flows, whereas the stream function has only been
defined for two-dimensional flows.

There are several techniques available to determine both the velocity poten-
tial (φ) and the stream function (ψ). For instance, commmon numerical and
analytical techniques such as Finite Element Method (FEM) [5] and seperation
of variables [10], respectively are frequently used to solve the Laplace equation
with the appropriate boundary conditions. Another popular technique is to find
some simple functions that satisfy the Laplace equation and to model the flow
around the body of interest, which is possible due to the linearity of the Laplace
equation. The focus of this paper will be this latter method, which is the most
widely used procedure for potential flows. In the next section, we will present
the formalization of these basic flows.

3 Formalizing Standard Potential Flow Solutions

In this section, we present some basic functions which satisfy the Laplace equa-
tion. Any function that satisfies this equation describes a potential flow. It is
noteworthy that in this work, we are interested in employing exact potential
flow solutions to formally validate them for the Laplace equation. Furthermore,
our objective is to use these elementary flows as building blocks to construct a
desired flow field, rather than deriving them.
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3.1 Uniform Flow

The most basic type of flow is a uniform steady flow as shown in Fig. 1. A uniform
flow directed in the positive x-direction has the velocity components u = U and
v = 0 everywhere. This type of flow is irrotational and therefore possesses a
velocity potential φ, which can be shown as follows:

φ = Ux (9)

Fig. 1. Uniform Flow

Additionally, the stream function can be
expressed as:

ψ = Uy (10)

The formal representations of a uniform
flow for the stream function and the velocity
potential are given as follows:

Definition 1. Uniform Flow
�def ∀U y. stream uniform U y = U * y

�def ∀U y. velocity uniform U x = U * x

3.2 Source/Sink Flow

In two-dimensional fluid dynamics, a source is defined as a point where fluid
propagates radially outward, while a sink represents a point of negative source
characterized by inward radial fluid movement as illustrated in Fig. 2(a) and 2(b),
respectively.

(a) Source Flow (b) Sink Flow

Fig. 2. Source/Sink Flow

The exact potential flow solutions centered at point (x0, y0) for the stream
function and the velocity potential are mathematically expressed as [13]:

ψ(x, y) =
m

2π
tan−1

(
y − y0
x − x0

)
(11)

φ(x, y) =
m

4π
ln((x − x0)2 + (y − y0)2) (12)
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Here, m denotes the strength of the source. A positive m (m > 0) denotes a
source flow, whereas a negative m (m < 0) indicates a sink flow.

Now, we formalize the above equations, i.e., Eqs. (11) and (12) in HOL Light
as follows:

Definition 2. Source Flow for the Stream Function
�def ∀m x y x0 y0.

stream source m x y x0 y0 =

m / (&2 * pi) * atn ((y - y0) / (x - x0))

Definition 3. Source Flow for the Velocity Potential
�def ∀m x y x0 y0.

velocity source m x y x0 y0 =

m / (&4 * pi) * log ((x - x0) pow 2 + (y - y0) pow 2)

Here, atn and log indicate the inverse of the tangent function and the natural
logarithm, respectively.

In the next subsections, we will use the polar coordinates r and θ to
describe the doublet and vortex flows. Note that uniform and source/sink flows
can be similarly represented using polar coordinates, utilizing the relationships
x = r cos θ, y = r sin θ. These transformations are particularly useful for prac-
tical examples.

3.3 Doublet Flow

As depicted in Fig. 3, the doublet is a special flow pattern that arises when a
source and a sink of equal strength are constrained to have a constant ratio of
strength to distance (κ), as the distance approaches zero.

Fig. 3. Doublet Flow

The resulting solutions for the stream
function and the velocity potential are as fol-
lows:

ψ(r, θ) = − κ

2πr
sinθ (13)

φ(r, θ) =
κ

2πr
cosθ (14)

The next step is to formalize the above equa-
tions (Eqs. (13) and (14)) in HOL Light:

Definition 4. Doublet Flow for the Stream
Function
�def ∀K theta r.

stream doublet K theta r =

--(K / (&2 * pi * r)) * sin (theta)

Definition 5. Doublet Flow for the Velocity Potential
�def ∀K theta r.

velocity doublet K theta r =

(K / (&2 * pi * r)) * cos (theta)

where stream doublet and velocity doublet accept the strength K, the radius
r and the angle theta and return the corresponding functions.
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3.4 Vortex Flow

A two-dimensional, steady flow that circulates about a point is known as a line
vortex. In this type of flow, the streamlines form concentric circles around a
specific point as shown in Fig. 4. It is important to note that the irrotational
nature of the flow is not contradicted by the potential vortex formulation.

Fig. 4. Vortex Flow

Fluid elements travel in a circular path
around the vortex centre without rotating about
their axes, thus meeting the condition of irro-
tational flow. The exact potential flow solu-
tion centered at the origin is mathematically
expressed as:

ψ(r, θ) =
Γ

2π
ln(r) (15)

φ(r, θ) = − Γ

2π
θ (16)

where Γ represents the circulation, which is
often positive when moving counter-clockwise.

Next, we formalize the vortex flow for the stream function and the velocity
potential, i.e., Eqs. (15) and (16) as:

Definition 6. Vortex Flow for the Stream Function
�def ∀gamma r. stream vortex gamma r = gamma / (&2 * pi) * log (r)

Definition 7. Vortex Flow for the Velocity Potential
�def ∀gamma theta. velocity vortex gamma theta = --gamma / (&2 * pi) *

theta

Table 2 summarizes the potential flows that are presented in this section.

Table 2. Standard Flows Overview

Flow Type Stream Function Velocity Potential

Uniform flow in
the x-direction

ψ(x, y) = Uy ψ(x, y) = Ux

Source/Sink ψ(x, y) =
m

2π
tan−1

(
y − y0

x − x0

)
φ(x, y) =

m

4π
In((x − x0)

2 +

(y − y0)
2)

Doublet ψ(r, θ) = − κ

2πr
sinθ φ(r, θ) =

κ

2πr
cosθ

Vortex ψ(r, θ) =
Γ

2π
In(r) φ(r, θ) = − Γ

2π
θ
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4 Formal Verification of the Laplace Equation’s Solutions

In this section, we present the formal verification of the exact potential flow
solutions of the Laplace equation. The purpose of this verification is to ensure
the correctness of analytical solutions and then establish their foundational role
in describing fluid behavior and facilitating engineering applications.

For this verification, our first step is to formalize the Laplace equation in
both Cartesian and polar coordinates in the HOL Light as follows:

Definition 8. The Laplace Equation in Cartesian Coordinates
�def laplace equation psi(x,y) ⇔ laplace operator psi(x,y) = &0

where laplace equation accepts the real function psi: R × R → R, the space
variables x:R and y:R and returns the corresponding Laplace equation. The
function Laplace operator is formalized as:

Definition 9. Laplace Operator�def ∀psi x y.

laplace operator psi(x,y) =

higher real derivative 2 (λx. psi(x,y)) x +

higher real derivative 2 (λy. psi(x,y)) y

Here, higher real derivative represents the nth-order real derivative of a
function.

The formal representation of the Laplace equation in polar coordinates, i.e.,
Eq. (8) is formalized as follows:

Definition 10. The Laplace Equation in Polar Coordinates
�def ∀psi r theta. laplace in polar psi r theta =

higher real derivative 2 (λr. psi(r,theta)) r +

&1/r * higher real derivative (λr. psi(r,theta)) r +

&1/(r pow 2) * higher real derivative (λtheta. psi(r,theta)) theta = &0

where the HOL Light function laplace in polar mainly accepts the function
psi of type R × R → R, the radial distance r and the angle theta and returns
the corresponding equation. We can also formalize the Laplace equation for the
velocity potential in a similar manner. With the formal definitions outlined pre-
viously, an important step is to verify that these potential flow solutions satisfy
the Laplace equation. In other words, this is the main condition for potential
flows to be valid, which is fundamental for understanding fluid behavior in var-
ious contexts. We start with the verification of the source flow for the stream
function, i.e., Eq. (11) in HOL Light as follows:

Theorem 1. Verification of the Source Flow for the Stream Function
�thm ∀m x0 y0 psi.

[A1] (∀x. x �= x0) ∧ [A2] (∀y. y �= y0) ∧
[A3] (∀x y. psi(x,y) = stream source m x y x0 y0)

⇒ laplace equation psi x y
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Assumptions A1 and A2 ensure that the points in a Cartesian coordinate system
are different from each other. Assumption A3 provides the solution of the Laplace
equation for source flow, i.e., Eq. (11). The proof of the above theorem is mainly
based on the real differentiation of the source flow solution with respect to the
parameters x and y.

Our next step is to formally verify the doublet flow (Eq. (13)) as the following
HOL Light theorem:

Theorem 2. Verification of the Doublet Flow for the Stream Function
�thm ∀K u.

[A1] (λr. &0 < r) ∧
[A2] (∀r theta. psi(r,theta) = stream doublet K theta r))

⇒ laplace in polar psi r theta

Assumption A1 ensures that the radial distance is greater than zero. Assumption
A2 provides the solution of the Laplace equation in polar coordinates (Eq. (8))
for doublet flow (Eq. (13)). The verification of Theorem 2 is mainly based on
the properties of real derivative [1] and some real arithmetic reasoning.

Finally, the vortex flow, i.e., Eq. (15) is verified as the following theorem:

Theorem 3. Verification of the Vortex Flow for the Stream Function
�thm ∀gamma u.

[A1] (λr. &0 < r) ∧
[A2] (∀r theta. psi(r,theta) = stream vortex gamma u r theta))

⇒ laplace in polar psi r theta

Assumption A1 is the same as that of Theorem 2. A2 provides the vortex flow
solution for the stream function, i.e., Eq. 15. The conclusion of Theorem 3 pro-
vides that the vortex flow solution satisfies the Laplace equation. The proof
of Theorem 3 is primarily based on the real differentiation of the vortex flow
solution with respect to the parameters r and theta. In this section, we only
presented the theorems for the stream function for the sake of brevity. The veri-
fication of the velocity potential function is done in a similar way. Details about
verification of the rest of the theorems can be found in our proof script [6]

In the next section, we use these formally verified solutions to build more com-
plicated flows which are widely applied in the analysis of flow patterns around
an airfoil [15].

5 Applications of Standard Flows

The Laplace equation is a second-order, linear, eliptic partial differential equa-
tion. Thanks to the linearity of the Laplace equation, more complicated flow
fields can be constructed from the superposition of basic solutions. If ψ1 and
ψ2 are the solutions (stream functions) of the Laplace’s equation and then their
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linear combination ψ1 + ψ2 will also be a solution for a two-dimensional incom-
pressible and irrotational flow. This unique feature makes this equation a power-
ful tool to analyze fluid flow problems. The ability to obtain new flow patterns by
superimposing known flows is fundamental to wing theory, as it provides simple
solutions to complex problems [2].

Our first step is to formally verify the linearity of the Laplace operator due
to its importance for the superposition principle.

Theorem 4. Linearity of Laplace Operator
�thm ∀psi phi a b.

[A1] (∀x. (λx. psi(x,y)) real differentiable atreal x) ∧
[A2] (∀x. (λx. phi(x,y)) real differentiable atreal x) ∧
[A3] (∀y. (λy. psi(x,y)) real differentiable atreal y) ∧
[A4] (∀y. (λy. phi(x,y)) real differentiable atreal y) ∧
[A5] (∀x. (λx. real derivative (λx. psi(x,y)) x)

real differentiable atreal x) ∧
[A6] (∀x. (λx. real derivative (λx. phi(x,y)) x)

real differentiable atreal x)

[A7] (∀y. (λy. real derivative (λx. psi(x,y)) y)

real differentiable atreal y)

[A8] (∀y. (λy. real derivative (λy. phi(x,y)) y)

real differentiable atreal y)

⇒ laplace operator (λ(x,y). a * psi(x,y) + b * phi(x,y)) (x,y) =

a * laplace operator (λ(x,y). psi(x,y)) (x,y) +

b * laplace operator (λ(x,y). phi(x,y)) (x,y)

Assumptions A1 and A2 ensure that the real-valued functions psi and phi are
differentiable at x, respectively. Assumptions A3 and A4 assert the differentiabil-
ity of the functions psi and phi at y, respectively. Additionally, Assumptions A5
and A6 provide the differentiability conditions for the derivatives of the functions
psi and phi at x, respectively. Similarly, Assumptions A7 and A8 guarantee the
differentiability conditions for the derivatives of the functions psi and phi at x,
respectively. The proof of the above theorem mainly relies on the properties of
derivatives and the differentiability of real-valued functions.

5.1 The Rankine Oval

By combining the exact solutions for uniform and source/sink flows, we can
construct a flow field around an oval-shaped object. The resultant configuration
is known as the Rankine oval. We start by analyzing the flow pattern around a
source and a sink. The source and sink are placed along the x-axis, separated
by a distance of 2a, as depicted in Fig. 5(a). The origin is situated equidistantly
between them. We now superimpose the uniform, source and sink flows, all
positioned in the x-direction, with a line source located at (−a, 0) and a line
sink of equal and opposite strength located at (+a, 0), as depicted in Fig. 5(b).
Assume the strengths of these source and the sink are +m and −m, respectively.
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source sink

+a-a

(a)

-a +a. .
source sink

(b)

Fig. 5. Source/Sink Flow

The overall stream function (ψ) and velocity potential (φ) for this combina-
tion of flows are expressed as:

ψ = ψuniform + ψsource + ψsink (17)

φ = φuniform + φsource + φsink (18)

Mathematically, they are represented by the combination of Eqs. (9), (10), (11)
and (12) for the stream function and the velocity potential as:

ψ(x, y) = −Uy +
m

2π

[
arctan

(
y

x + a

)
− arctan

(
y

x − a

)]
(19)

φ(x, y) = Ux +
m

4π
ln

(
(x + a)2 + y2

(x − a)2 + y2

)
(20)

Next, we formally verify these combined flows for the stream function as the
following HOL Light theorem:

Theorem 5. Verification of the Rankine Oval for the Stream Function
�thm ∀U m a psi x0 x1 y0 y1.

[A1] (∀x. x �= a) ∧ [A2] (∀x. x �= --a) ∧ [A3] x0 = --a ∧
[A4] x1 = a ∧ [A5] y0 = &0 ∧ [A6] y1 = &0 ∧
[A7] (∀x y. psi(x,y) = sum (0..2) (λn. EL n [--stream uniform U y;

stream source m x y x0 y0; stream sink m x y x1 y1]))

⇒ laplace equation psi x y

Assumptions A1 and A2 guarantee that the validity of our expression by spec-
ifying that x must be different from a and --a, respectively. Asssumptions A3
and A4 provide the distance from the origin. Assumptions A5 and A6 assert that
the points y0 and y1 are equal to zero since the flows are oriented in towards
the x-direction. Assumption A7 provides the combined solutions for the stream
function, i.e., Eq. (19). Here, the function EL n l extracts the nth element from
a list l. The verification of Theorem 5 is mainly based on the properties of real
derivatives, some real arithmetic reasoning and the following HOL Light lemma:
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Lemma 1. Superposition of the Solutions
�lem ∀U m x y x0 x1 y0 y1.

sum (0..2) (λn. EL n [--stream uniform U y; stream source m x y x0 y0;

stream sink m x y x1 y1]) = --stream uniform U y + stream source m x y x0 y0

+ stream sink m x y x1 y1

The above lemma states that the summation of the list equals to the linear
combination of uniform, source and sink flows.

5.2 Potential Flow Past a Circular Cylinder

As shown in Fig. 6, we can build a potential flow solution for the flow around a
circular cylinder using the superposition of a uniform (Fig. 6(a)) and a doublet
flow (Fig. 6(b)) in the x-direction. This combination produces a non-lifting flow
over the cylinder, as represented in Fig. 6(c). The resulting stream function and
velocity potential for this particular combination of potential flows can be given
as:

ψ = ψuniform + ψdoublet (21)

φ = φuniform + ψdoublet (22)

+

(a) Uniform Flow

=k

(b) Doublet Flow

R r θ

(c) Non-Lifting Flow over
a Cylinder

Fig. 6. Potential Flow Past a Circular Cylinder [14]

We can mathematically express this combination by adding the solutions for
uniform and doublet flows, i.e., Eqs. (9), (10), (13) and (14). It is known that
y = rsinθ in polar coordinates.

ψ(r, θ) = U
(
r +

κ

2πr

)
sinθ (23)

φ(r, θ) = U
(
r − κ

2πr

)
cosθ (24)

Next, we formally verify Eq. (23) in HOL Light as follows:
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Theorem 6. Verification of Potential Flow Past a Circular Cylinder
�thm ∀U K y psi.

[A1] (∀r. &0 < r) ∧ [A2] (∀r theta. y = r * sin(theta)) ∧
[A3] (∀r theta. psi(r,theta) = sum (0..1) (∀n. EL n [stream uniform U y;

stream doublet K theta r]))

⇒ laplace in polar psi r theta

Assumption A1 ensures that the radial distance is greater than zero, while
Assumption A2 indicates that y = r * sin(theta) in polar coordinates.
Assumption A3 provides the superposition of the uniform and doublet flow solu-
tions for the stream function, as shown in Eq. (23). Similar to Theorem 5, we
proved a lemma regarding superposition of the solution as well as proving the
real derivatives of the solution in order to formally verify this theorem.

5.3 Potential Flow Past a Rotating Circular Cylinder

Figure 7(c) illustrates a flow around a rotating circular cylinder. This flow can
be constructed by combining a uniform flow and a doublet flow, as depicted in
Fig. 7(a), along with a vortex flow, as shown in Fig. 7(b). In this context, the
stream function and the velocity potential for this combination of potential flows
can, respectively, be given as:

ψ = ψuniform + ψdoublet + ψvortex (25)

φ = φuniform + φdoublet + φvortex (26)

(a) Non-Lifting Flow over a
Cylinder

(b) Vortex Flow (c) Lifting Flow over a
Cylinder

Fig. 7. Potential Flow Past a Rotating Circular Cylinder [14]

It is important to note that combining a uniform flow and a doublet flow effec-
tively models the flow around a non-rotating circular cylinder, as given by Eqs.
(23) and (24). Therefore, we can write the final mathematical expression of these
flows for the stream function and the velocity potential by adding the solutions,
i.e., Eqs. (15), (16), (23) and (24) as:
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ψ(r, θ) = U
(
r +

κ

2πr

)
sinθ +

Γ

2π
In(r) (27)

φ(r, θ) = U
(
r − κ

2πr

)
cosθ + − Γ

2π
θ (28)

The above equations can be alternatively written as:

ψ(r, θ) = Ursinθ

(
1 − R2

r2

)
+

Γ

2π
Inr (29)

φ(r, θ) = Urcosθ

(
1 − R2

r2

)
+

Γ

2π
θ (30)

where R2 =
m

2πU
and m is the strength of the doublet.

Finally, we formally verify Eq. (27) as the following HOL Light theorem:

Theorem 7. Verification of Potential Flow Past a Rotating Circular Cylinder
�thm ∀U K y gamma psi.

[A1] (∀r. &0 < r) ∧ [A2] (∀r theta. y = r * sin(theta)) ∧
[A3] (∀r theta. psi(r,theta) = sum (0..2) (∀n. EL n [stream uniform U y;

stream doublet K theta r; stream vortex gamma theta r]))

⇒ laplace in polar psi r theta

Assumptions A1-A2 are the same as those of Theorem 6. Assumption A3 pro-
vides the combination of the uniform, doublet and vortex flow solutions for the
stream function, i.e., Eq. (27). The verification of Theorem 7 is similar to that
of Theorem 6. We also conducted a formal verification of the combination of
these standard flows for the velocity potential. Further details on this latter
formalization can be found in our proof script [6].

5.4 Discussion

A notable aspect of the work presented in this paper is the development of the
first formalization of potential flows which has wide applications in aerodynam-
ics, particularly in airfoil theory. A key aspect of our work is the incorporation
of theorem proving into a domain typically prevalent in numerical techniques.
This approach allows for the identification of logical errors and inconsistencies in
models that may not be evident in simulation results, ultimately helping to pre-
vent potential flaws during the design process. One of the main challenges of this
work is its interdisciplinary nature, as it requires a deep understanding of aero-
dynamic principles, the integration of mathematics, and the meticulous process
of interactive theorem proving. Another significant challenge is verifying exact
analytical solutions governed by the Laplace equation. The proof process must
establish the real derivatives of these solutions and their linear combinations.
While traditional paper-and-pencil proofs can overlook trivial details, theorem
proving demands a substantial amount of time due to the undecidable nature of
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higher-order logic and requires every detail to be meticulously provided to the
computer. One of the benefits of this work is that it addresses these challenges by
formalizing the core concepts of potential flow theory, allowing available results
to be built upon to minimize user interaction. Additionally, all of the verified
theorems and lemmas are general, opening the door to future expansions. Given
the limited number of engineers and physicists with expertise in formal meth-
ods, we believe that our work can be a significant step towards bridging the gap
between theorem proving and the aerospace engineering communities, thereby
enhancing its applicability in industrial settings.

6 Conclusion

In this paper, we conducted the formal specification and verification of standard
potential flows solutions which satisfy the Laplace equation using higher-order
logic theorem proving. We first formalized four fundamental potential flows,
namely, the uniform, source/sink, doublet and vortex flows. Moreover, we for-
mally modeled the Laplace equation in both Cartesian and polar coordinates.
Furthermore, we formally verified the linearity of the Laplace operator since it
is a very powerful tool to create more complicated flow fields. We then con-
structed the formal proof for the exact potential flow solutions of the Laplace
equation. Finally, in order to demonstrate the applicability of our formalization
work, we formally analyzed several practical applications, including the Rankine
oval, potential flow past a circular cylinder and potential flow past a rotating cir-
cular cylinder. For the future work, we plan to extend our formalization for other
complex-valued potential flows in order to analyze more complicated problems
in aerodynamics.
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Abstract. Autonomous vehicles (AVs) are expected to satisfy not only
safety, but they also shall achieve specific goals, e.g., stopping at a partic-
ular location on a shoulder lane of a highway for an emergency evacuation
while avoiding collisions. The Goal-Aware Responsibility-Sensitive Safety
(GA-RSS) framework was proposed to derive control strategies guaran-
teed to satisfy safety and goal achievement. This framework extends
RSS rules, originally designed for safety in basic traffic situations, with
a program logic allowing to reason on goal achievements in complex
situations. In [11], the Event-B proof-based formal method was used
to design a correct-by-construction model of the whole AV controller
with a safety architecture and control strategies derived with the GA-
RSS framework. This work is extended to handle liveness properties,
which are extensively used to model complex goals and achieving them
employing the EB4EB reflexive meta-modelling framework. As a result,
relying on the EB4EB meta-model, an on-the-fly verification of tempo-
ral properties such as deadlock-freeness and goal reachability has been
formalised and performed for advanced reasoning. Furthermore, the case
study demonstrates additional strengths of the EB4EB meta-modelling
approach, such as improvement of modelling and proof understandability
and reusability.

Keywords: Autonomous vehicles · Goal-Aware RSS · Reachability ·
Proof-based verification · EB4EB framework · Safety architecture ·
Event-B

1 Introduction

Context. For a long time, industries have been relying on formal methods tech-
niques to design safety critical systems [8]. For the particular case of safety assur-

The authors thank the ANR-19-CE25-0010 EBRP: EventB-Rodin-Plus project.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Ogata et al. (Eds.): ICFEM 2024, LNCS 15394, pp. 314–331, 2024.
https://doi.org/10.1007/978-981-96-0617-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0617-7_18&domain=pdf
https://doi.org/10.1007/978-981-96-0617-7_18


Reachability in AV Controllers 315

ance of autonomous vehicles (AVs), formal methods and particularly theorem
proving based methods are effective, since proofs serve as strong and explainable
evidence, and assist in the core development process to identify faults in early
stages of the system development. At least, using theorem proving to guarantee
the AV’s safety under certain conditions would help to blame the environment
to some extent for a good reason.

The Responsibility-Sensitive Safety (RSS) [20] framework is a promising app-
roach to safety for AV systems, that can be used with theorem proving methods
to establish complex functional safety properties of AV controllers. It provides
formalised rules AVs should follow for safety (i.e., no collision) in basic traffic
situations. However, realistic AVs are expected to satisfy not only safety but
also goal achievement, e.g., reaching an exit on a highway at a low speed while
avoiding collisions. As an extension of RSS, the Goal-Aware RSS (GA-RSS)
framework [9] is proposed to guarantee both goal achievement and safety in
complicated driving scenarios.

Fig. 1. The revised method in this paper is an
extension of previous work [11]

In [11], correct-by-construction
formal models of AV controllers
that follow the rules derived in
GA-RSS are derived. By using a
safety architecture, the controller
is guaranteed to be safe even if the
controllers embed black-box com-
ponents (e.g., components based
on machine learning). In this
work, the Event-B method [1],
which supports an on-the-fly proof
while developing models at multi-
ple abstraction levels, is used. This approach provides a set of proof obligation
rules for safety properties of a model and for the simulation relation between
two models (refinement). Furthermore, it enables the step- wise construction of
complex models – from abstract models to concrete models – while checking
their correctness by discharging proof obligations generated from the rules every
time a model is constructed.

Objective. Starting from the work of [11] which formalised a set of properties
required by GA-RSS and demonstrated their safety implications, the objectives
of this paper are twofold. The first objective is to extend [11] to have machine-
checked proof of goal achievement formalised as a liveness case (new contribu-
tions are highlighted in dark rectangular boxes in Fig. 1). Here, the difficulty
comes from the fact that Event-B does not support explicit formalisation of live-
ness properties nor theorem proving for such domain-specific properties. The
second objective consists in performing liveness properties verification in the
same framework provided by Event-B, avoiding model transformation, and the
certification of the transformation to other formal verification techniques like
model checking.
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Relying on the work in [15] and the developed models, the proposal is to use
a meta-modelling approach grounded in the EB4EB framework [14] to extend
Event-B with liveness while also considering domain specific scenarios such as
GA-RSS goals, the whole developments being conducted in a single framework.

Organisation of this Paper. The remainder of this paper is organised as fol-
lows: Sect. 2 presents related work, and the Event-B modelling framework is
described in Sect. 3. The GA-RSS framework is introduced in Sect. 4 while Sect. 5
describes the EB4EB meta-modelling framework. Section 6 describes the initial
solution with classical Event-B and then the instantiation of the EB4EB frame-
work is presented for verification purpose. Section 7 describes the extension of
EB4EB with new properties (i.e., liveness) to complement verification. Finally,
Sects. 8 and 9 provide assessment and conclusion with identified perspectives,
respectively.

2 Related Work

Various formal approaches have been proposed for the safety of AVs. In [10], RSS
rules are encoded as STL formulas for monitoring AVs. Such lightweight formal
methods are helpful, but more thorough verification using formal models is also
studied for strong guarantees. Roohi et al. [17] constructed a formal model based
on RSS and argued that existing fully automatic tools (e.g., reachability analysis
tools or model checkers) are unsuitable for verifying such models. Several studies
take theorem proving approaches with RSS. Selvaraj et al. [18] verified the safety
of AVs with KeYmaera X. Crisafulli et al. [4] considered interactions between
actors and used HOL-CSP to formalize and verify the safety of several traffic
scenarios. Rizaldi et al. [16] used Isabelle/HOL to prove safety and goal reacha-
bility in a simple white-box AV model in simple driving scenarios. Eberhart et
al. [6] defined an extension of the program logic of GA-RSS to verify properties
of the whole safety architecture that include black-box components.

This paper aims to derive formal models of AV controllers that include black-
box components used in complex driving scenarios. The prime aim is to derive
correct-by-construction models while performing on-the-fly proof of both safety
and goal reachability in a single formal modelling setting grounded in formalised
Event-B extensions. Currently, only white-box AVs controllers have been mod-
elled using Event-B [5] and hybrid Event-B [2]. In [12], Laibinis et al. proposed a
framework to model, within Event-B, goal-oriented multi-agent systems derived
from goal-oriented state transition systems defined by the authors. [11] describes
the first attempt of addressing black-box AVs controllers using Event-B.

In Event-B, liveness properties can be verified using model checking tools
such as ProB [13]. A formal institution for Event-B to establish correctness
is introduced in [7], facilitating the composition of diverse semantics and model
definitions. Recently, a reflexive meta-modelling framework, EB4EB [14,15], was
proposed to perform advanced new proof-based, non-intrusive analyses on Event-
B models. It allows to enrich event-B with additional certified proof obligations.
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In particular, it assesses reachability, liveness properties, deadlock-freeness, find-
ing weak invariants, and so on.

In this paper, the EB4EB reflexive framework is set up to perform proof-
based reachability analysis in AV controllers relying on GA-RSS. This work
aims at formalising and verifying complex goal achievements using the EB4EB
framework which supports the expression and verification of reachability prop-
erties in Event-B models. Furthermore, the goal is to verify the reachability of
complex compositional goals that cannot be reached without first achieving spe-
cific subgoals. This is dependent on the GA-RSS framework for formal backwards
reasoning (like in Hoare logic) for identifying such subgoals. Note that this back-
ward reasoning fits well with the backward reasoning style offered by Event-B
proof obligations and associated proof system.

3 Event-B: A State Based Formal Method

3.1 Event-B

Table 1. Global structure of Event-B Contexts, Machines and Theories

Context Machine Theory

CONTEXT Ctx MACHINE M THEORY Th
SETS s SEES Ctx IMPORT Th1, ...
CONSTANTS c VARIABLES x TYPE PARAMETERS E, F , ...
AXIOMS A INVARIANTS I(x) DATATYPES
THEOREMS Tctx THEOREMS Tmch(x) Type1(E, ...)
END VARIANT V (x) constructors

EVENTS cstr1(p1: T1, ...)
EVENT evt OPERATORS

ANY α Op1 <nature> (p1: T1, ...)
WHERE Gi(x, α) well−definedness WD(p1, ...)

THEN direct definition D1

x :| BAP(α, x, x′)AXIOMATIC DEFINITIONS
END TYPES A1, ...
... OPERATORS

END AOp2 <nature> (p1: T1, ...): Tr

well−definedness WD(p1, ...)

AXIOMS A1, ...
THEOREMS T1, ...
PROOF RULES R1, ...
END

(a) (b) (c)

Event-B [1] is a state-based formal modelling method that supports a correct-
by-construction approach. In this method, the system’s behaviour is represented
by a collection of events that describe state transitions. The language is based
on first-order logic (FOL) and set theory.
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Modelling. Contexts (Table 1.a) and Machines (Table 1.b) are two main mod-
elling components, with Contexts describing the model’s static part: carrier
sets s, constants c, axioms A and theorems Tctx, and Machines describing the
dynamic parts: variables x, invariants I(x), variants V (x), events evt and the-
orems Tmch(x). Each event, which can be guarded by guard G and/or parame-
terized by parameters α, models state variables evolution using a Before-After
Predicate (BAP). Invariants I(x) and theorems Tmch(x) are used to encapsu-
late safety properties, and variants V (x) can be generated to ensure machine’s
convergence.

Table 2. Contexts and Machines proof obligations

(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts)

(2) Mch Theorems (ThmMch) A(s, c) ∧ I(x) ⇒ Tmch(x) (For machines)

(3) Initialisation (Init) A(s, c) ∧ BAP(x′)⇒ I(x′)

(4)Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ I(x′)

(5) Event feasibility (Fis) A(s, c) ∧ I(x) ∧ G(x, α)⇒ ∃x′ · BAP(x, α, x′)

(6) Variant progress (Var) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ V (x′) < V (x)

Proof Obligations. Several proof obligations (POs), shown in Table 2, are asso-
ciated to Event-B models. These POs relate to theorem consistency ((1) for
contexts and (2) for machines), invariant preservation (inductively defined in (3)
and (4)), event feasibility (5), and variant decrease (6). All of these POs are gen-
erated automatically in the Rodin platform, and must be proven to guarantee
the correctness of an Event-B model.

Refinement. One key advantage of Event-B is its refinement operation, which
allows for the gradual addition of information and details to transform an
abstract model into a more concrete one. This process retains a similar observa-
tional behaviour (simulation relation) by incorporating refined states and events.
Gluing invariants, which describe relationships between states of an abstract
model and its concrete model, aid in verifying the correctness of the refinement
by ensuring that properties are maintained as it moves from the abstract model
to the concrete model.

The Rodin Platform. Rodin is an open source framework for developing and
verifying Event-B models. It also supports model checking and animation with
ProB, as well as code generation. Rodin also allows the integration of many
external provers related to FOL and SMT solvers to aid in the proof process.
Moreover, Rodin enables the development of new plug-ins, such as the theory
extension.
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3.2 Theories Extension

Based on set theory and FOL, the Event-B formalism is mathematically low-level
and thus very expressive. However, it lacks features to build up more complex
structures. In order to define more complex structures in Event-B, a theory
extension [3] (see Table 1.c) is proposed to define additional generic algebraic
datatypes together with constructive and axiomatic operators, including well-
definedness (WD) conditions, theorems, axioms and new proof rules. The con-
sistency of the resulting theories can be demonstrated by supplying witnesses
for axioms and definitions, hence ensuring Event-B extensions. The elements
of a theory can be easily accessed in an Event-B model and its proofs after
they have been defined. This extension is akin to modularisation mechanisms
available in other theorem provers such as Coq, Isabelle/HOL or PVS. Several
theories have been defined for real numbers, lists, groups, differential equations,
domain-specific theories, etc.

4 The Goal-Aware RSS Framework

4.1 Responsibility-Sensitive Safety (RSS)

Responsibility-Sensitive Safety (RSS) [20] is an approach for guaranteeing AV
safety with formal proofs. RSS defines the responsibility of participants in several
basic traffic situations for safety (no collisions) so that safety is guaranteed if
traffic participants follow the rules. For instance, Fig. 2 shows a situation where
the subject vehicle (SV) goes behind a principal other vehicle (POV) on a one-
way road.

Fig. 2. The one-way traffic scenario [20]

In this case, SV is responsi-
ble for maintaining the distance no
less than the minimum safety dis-
tance dRSS by braking with a brak-
ing rate of more than abrake,min

when the distance reaches dRSS (such
behaviour is called a proper response).
dRSS is defined by1: dRSS(vr, vf ) =

max
(
0, v2

r

2abrake,min
− v2

f

2abrake,max

)
. Here, vr and vf are velocities of the rear vehicle

and the front vehicle, respectively, and abrake,min and abrake,max are the normal
braking rate and emergency braking rate, respectively.

1 This definition of dRSS is simplified. In RSS [20], the response time (i.e., the time it
takes for the vehicle to activate the brake) is also taken into account.
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4.2 Goal Achievement in Autonomous Driving

Fig. 3. Pull over scenario [9]

While RSS provides foundations for
formal safety assurance in various
traffic situations, expectations for AVs
include goal achievement as well. For
instance, Fig. 3 shows a scenario (pull
over scenario) where the subject vehi-
cle on a highway aims at an emer-
gency stop at a certain place on the
shoulder lane without colliding [9].
RSS is not enough for this scenario because:

• It should ensure the goal achievement, i.e., a certain goal is achieved while
maintaining the safety; using only RSS may make the SV trapped in Lane 1.

• There are multiple subgoals. To achieve the goal, the SV must achieve certain
subgoals while preparing for subsequent subgoals. For instance, the SV should
be slowed down once Subgoal 3 is achieved to stop at the goal position.

• Subgoals may have trade-offs. For example, the SV should accelerate for Sub-
goal 1, but accelerating too much prevents achieving Subgoal 4.

For a given situation and goal, an AV controller should be able to select an
appropriate sequence of proper responses to achieve this goal.

4.3 Goal-Aware RSS (GA-RSS)

The Goal-Aware RSS (GA-RSS) framework [9] was proposed to identify which
sequence of manoeuvres an AV should take in which situation to fulfil the safety
and the goal achievement in complicated cases like the pull over scenario.

The core idea of the framework stems from the similarity between sequential
driving manoeuvres and program code; It can view (sub)goals as postconditions
and proper responses as program commands, then derive the precondition of the
whole scenario through backward reasoning as in Floyd-Hoare logic.

The framework provides a program logic for such formal discussions named
dFHL. It has derivation rules for reasoning asserted hybrid programs (Hoare
quadruples) in the form of {P} α {Q} : S, where P and Q are precondition
and postcondition, respectively, α is the proper response written as a hybrid
program, and S is the safety invariant maintained during the execution of α.

The framework also provides the following tool-assisted workflow for deriving
rules for compositional scenarios. The core part of the workflow has four steps
for identifying the whole scenario, sub-scenarios, a proper response for each sub-
scenario, and a precondition of each sub-scenario.

Step 1: Identifying the Whole Scenario. First, the user identifies the whole
scenario of interest. Concretely, (1) the goal condition, (2) the environmental
condition, and (3) the safety condition are identified. For instance, the whole
pull over scenario is formalised as : Goal = (l = 3 ∧ x = xtgt ∧ v = 0),
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Env =
∧

i=1,2,3(vmin ≤ vi ≤ vmax∧ai = 0)∧ l1 = 2∧ l2 = 2∧ l3 = 1∧x2 > x1 and
Safe =

∧
i=1,2,3(aheadSLi ⇒ xi −x > dRSS(vi, v))∧0 ≤ v ≤ vmax∧−abrake,min ≤

a ≤ amax.
Here, l and l{1,2,3} are lane numbers of SV and three POVs; x and x{1,2,3}

are their positions; v and v{1,2,3} are their velocities; a and a{1,2,3} are their
accelerations; xtgt is the target position; vmin and vmax are the minimum and
the maximum velocity allowed on the highway; abrake,min is the normal braking
rate; amax is the maximum acceleration of vehicles; and aheadSLi is whether the
ith POV is ahead of the SV in the same lane.

Step 2: Identifying Sub-scenarios. Next, the user decomposes the whole sce-
nario as a sequence of sub-scenarios2. For example, from the pull over sce-
nario, a sequence of four sub-scenarios can be identified (Fig. 3). For instance,
Sub-scenario 4 is as follows: Goal4 = (x = xtgt ∧ v = 0), Env4 = Env and
Safe4 = (l = 3 ∧ 0 ≤ v ≤ vmax ∧ −abrake,min ≤ a ≤ amax).

Step 3: Identifying Proper Responses. Then, a proper response is identified for
each sub-scenario. For instance, a proper response for sub-scenario 4 (cruise
until the distance to the target becomes v2

2abrake,min
, then brake with braking rate

abrake,min until the SV stops) is as follows: α4 = (a := 0; dwhile( v2

2abrake,min
<

xtgt − x){ẋ = v, v̇ = a}; a := −abrake,min; dwhile(v > 0){ẋ = v, v̇ = a}; ).
Note that α4 describes a hybrid program detailed in [9], which includes assign-

ment (:=), sequence (;) and the differential while operation dwhile(A){ẋ = f},
where a dynamic system follows differential equations until the condition A
becomes false, and ẋ represents the derivative of the function x over time.

Step 4: Identifying Preconditions. Finally, the user identifies the precondition
for each sub-scenario from the final sub-scenario to the first through backward
reasoning. The precondition should guarantee the achievement of the subgoal
and the next precondition after executing the proper response.

For example, a precondition of sub-scenario 4, which satisfies
{φ4} α4 {Goal4} : (Safe4 ∧ Env4), is as follows: φ4 = (Env ∧ l = 3 ∧ v >

0 ∧ v2

2abrake,min
≤ xtgt − x).

The precondition φ4 is used to derive the precondition of sub-scenario 3 (φ3)
such that {φ3} α3 {φ4 ∧ Goal3} : (Safe3 ∧ Env3). This process is repeated until
the precondition of the first sub-scenario (φ1), i.e., the precondition of the whole
scenario, which can be used to judge if the current situation is an instance of
the scenario and SV can take the identified proper responses.

2 In general, a tree of sub-scenarios is identified by combining multiple decompositions.
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4.4 The Simplex Architecture

Fig. 4. Simplex architecture [19]

The Simplex architecture [19] is a soft-
ware architecture that can be used to
ensure the safety of high-performance
black-box controllers. It is composed of
the advanced controller (AC), the base-
line controller (BC), and the decision
module (DM) (Fig. 4). AC is typically a
black-box controller (e.g., one based on
machine learning) designed for various kinds of performance (e.g., comfort and
fuel efficiency). BC is a rule-based white-box controller that focuses on safety.
DM uses BC if the safety is about to be violated, while it uses AC if the situation
is far from a safety violation.

Proper responses derived via the GA-RSS workflow are meant to be used as
rules for BC in the Simplex architecture so that the whole controller can provide
various kinds of performance while guaranteeing safety and goal achievement.

5 A Formal Meta-model for Event-B: The EB4EB
Framework

The EB4EB framework [14] extends Event-B’s formal reasoning process by mak-
ing available core Event-B elements via meta and reflexive modelling notions.
This paradigm enables the development of new reasoning mechanisms for live-
ness, reachability, deadlock-freeness, etc., which are not supported in core Event-
B. This framework takes the form of a set of theories to handle Event-B com-
ponents using the Event-B theory extension. To model Event-B components,
operators and necessary datatypes, together with well-definedness conditions,
are defined.

Machine Structure. In Listing 1, a machine is represented by a datatype Machine
with generic types for events (Ev), states (St), and parameters (Pa). Furthermore,
a constructor Cons_machine is defined to collect machine components such as
Event, State, Init, Variant, BAP, and so on.

THEORY EvtBTheo
TYPE PARAMETERS St, Ev, Pa
DATATYPES Machine ( St , Ev ,Pa)
CONSTRUCTORS

Cons_machine(
Event : P(Ev),
State : P(St),
Init : Ev,Progress : P(Ev)
V ariant : P(St × Z),
AP : P(St),
BAP : P(Ev × ((Pa × St) × St)),
Grd : P(Ev × (Pa × St)),
Inv : P(St) ,
. . .)

Listing 1. Machine data type

Well-Construction. Although a machine,
defined using the machine constructor
Cons_machine, is syntactically correct,
it might be inconsistent. To overcome
this issue, an additional set of oper-
ators is defined to encode the “well-
construction” of a machine and its com-
ponents. This is a key stage in ensur-
ing the uniformity and correct interac-
tion of the components. For example,
the predicate Event_WellCons opera-
tor models that events are partitioned
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between initialisation and progress events. All well-construction operators are
combined in the defined operator Machine_WellCons.

Machine POs. Mirroring the Event-B method, the EB4EB framework defines
a collection of new operators to encode the proof obligations defined in core
Event-B (see Listing 2). All of these operators are predicates that rely on the
machine’s set-theoretical specification and guarded transition system semantics.
For example, for a given machine m the predicate Mch_INV(m) holds if and only
if the invariants of m hold with regard to m’s behaviour, equivalent to the proof
obligation for invariant preservation (Inv).
Mch_INV_Init <predicate> (m : Machine(St, Ev, Pa))

direct def init ion AP (m) ⊆ Inv(m)
Mch_INV_One_Ev <predicate> (m : Machine(St, Ev, Pa), e : Ev)

well−definedness e ∈ Progress(m)
direct def init ion BAP (m)[{e}][(Pa × Inv(m)) ∩ Grd(m)[{e}]] ⊆ Inv(m)

Mch_INV <predicate> (m : Machine(St, Ev, Pa))
direct def init ion

Mch_INV _Init(m) ∧ (∀e · e ∈ Progress(m) ⇒ Mch_INV _One_Ev(m, e))
. . .

Listing 2. Well-defined data type operators (behavioural semantics)

check_Machine_Consistency <predicate
> (m : Machine(St, Ev, Pa))

well−definedness
Machine_WellCons(m)

direct def init ion Mch_INV (m) ∧ . . .

Listing 3. Operator for Event-B machine
consistency

Furthermore, all the PO operators
are grouped together in a conjunctive
form to define a new operator called
check_Machine_Consistency (see List-
ing 3) for ensuring the correctness con-
ditions of a machine. This operator fea-
tures a WD condition enforcing the
machine’s correct construction, and is typically used as a theorem during the-
ory instantiation. Discharging the proof obligations revolves on stating the
check_Machine_Consistency predicate operator as a theorem in an Event-
B context, instantiating the Machine data-type, where the ThmCtx PO of
Table 2 and the WD PO of the operator are automatically generated.

Temporal and Liveness Properties. In [15], the EB4EB framework is extended by
another theory for reasoning about temporal and liveness properties in Event-
B. The base theory of EB4EB is extended with a set of new operators, WD
conditions and POs to cover a range of temporal operators, such as TLUntil (U),
TLPersistence (♦�) and TLExistence (�♦). As they are invoked in a theorem,
the proof obligation associated to each operator is generated automatically. It
should be noted that the soundness of the given temporal operators is checked
using Event-B machines’ trace semantics.

Instantiation of EB4EB. The meta theory of EB4EB is used to define spe-
cific Event-B machines (instantiation) using the Cons_machine constructor. An
Event-B context can be used to instantiate the generic types parameters St, Ev
and Pa, as well as machine components. Note that new theorems are introduced
for both the conventional Event-B POs and the new POs related to temporal
properties. These theorems generate new POs that must be discharged to ensure
the correctness of the instantiated Event-B model.
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6 On-the-Fly Proof for GA-RSS AV Controller Models

This section presents the first contribution showing that all the features of the
Goal-RSS Event-B models developed in [11] can be represented in a single Event-
B context without loss of expressiveness.

6.1 The Target Model Constructed with Core Event-B

MACHINE subscenario4_2 . . .
VARIABLES xSV vSV ctrl vSVBCInit

tCruise_BC tBrake_BC
INVARIANTS
precond : precond(xSV 	→ vSV ) = TRUE
safety_vSV : 0 ≤ vSV ≤ vMax
. . .

EVENTS
Init . . .
BC_CruisetoAC
ANY xSVp, vSVp
WHERE
BC_operating : ctrl = bc
in_safety_env_next :

precond(xSV + (2 ∗ (vSV + aMax))
	→ vSV + (2 ∗ aMax)) = TRUE

s t i l l_cruise : 1 ≤ tCruise_BC
will_brake : tBrake_BC 
= 0
have_been_cruising :

vSV = vSV BCInit
cruise_v : vSV p = vSV BCInit
cruise_x : xSV p = xSV + vSV BCInit

THEN
xSV_update : xSV := xSV p
vSV_update : vSV := vSV p
switch_to_AC : ctrl := ac
tCruise_pass :

tCruise_BC := tCruise_BC − 1
END
BC_Brake_runtoAC . . .
. . .

Listing 4. Sub-scenario 4 as an Event-B
machine [11]

The GA-RSS framework ensures con-
trollers’ safety and goal achievement
based on rules derived from the frame-
work. However, for controllers con-
structed with a safety architecture
such as Simplex, it is important to
ensure the safety and goal achieve-
ment of the whole controller. Specif-
ically, the DM should switch between
AC and BC to ensure the overall con-
troller’s safety and goal achievement.

In previous work [11], Event-
B is used to derive a correct-by-
construction model of the whole con-
troller that uses the Simplex architec-
ture and GA-RSS rules for each sub-
scenario of the pull over scenario. For
example, the machine of the controller
for sub-scenario 4 (Sect. 4.3) is in
Listing 4. The following variables are
declared: the position and the velocity
of the SV (xSV and vSV ), the active
controller module (ctrl , whose value
is ac or bc), the velocity when BC
got activated (vSVBCInit), and the remaining time for cruising and braking
(tCruise_BC and tBrake_BC ).

For each case, the controller’s behaviour is written as an event. For exam-
ple, event BC_CruisetoAC is the behaviour for the case where the current active
controller is BC (guard BC_operating), the vehicle should still cruise (guard
still_cruise), and the situation is far from a violation of the precondition
φ4 (i.e., φ4 will hold even if the vehicle will keep accelerating with the maxi-
mum acceleration rate for two cycles) (guard in_safety_env_next). Then, the
SV’s velocity after a cycle (parameter vSVp) will be the same as before (guard
cruise_v and action vSV_update), the SV’s position after a cycle (parameter
xSVp) will be changed due to the constant speed movement (guard cruise_x
and action xSV_update), AC will become active (action switch_to_AC), and the
remaining time for cruising will be decreased (action tCruise_pass).
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Formal verification is performed to ensure the preservation of invariant pred-
icates. The main invariant is the precondition of sub-scenario 4 (φ4) (invariant
precond), i.e., the whole controller (including black-box AC) satisfies φ4 due
to DM’s switching. Although the preservation of φ4 and GA-RSS framework
guarantees the safety of sub-scenario 4 (Safe4) (invariant safety_vSV3), this is
also proven to preserve Safe4 in the Event-B environment, with machine-checked
proof.

While the machine-checked proof of the safety properties was completed, the
proof for goal achievement was not completed as core Event-B does not support
proof of liveness properties. The rest of the paper describes how this problem is
tackled relying on the EB4EB extension capabilities.

6.2 Formal Verification Using EB4EB Framework

This section covers the advanced-level formal reasoning on AVs for dealing with
the challenges raised in Sect. 6.1. The developed case study requires support for
verifying temporal properties, such as liveness and reachability. The main contri-
bution of this paper is to perform formal verification of such properties using the
EB4EB framework. The usage of the EB4EB framework and its temporal the-
ory extension enables the generation of additional proof obligations, particularly
those related to liveness and its associated missing key properties.

Note that these key properties have emerged as a result of the integration of
several complex fields such as the Simplex architecture, cyber-physical systems
and GA-RSS. The EB4EB framework is used to formally verify these properties
by encoding them as additional POs. Checking such POs inherits from EB4EB
the benefits of non-intrusive analyses of the core model, explicit modelling of
new properties, and reusability.

CONTEXT subscn4_2_deep EXTENDS ctx_subscn4 , ACBC
SETS EvInst CONSTANTS StInst , PaInst ,init , BC_CruisetoAC , . . .
AXIOMS

axm1 : partition(EvInst , {init}, {BC_CruisetoAC}, . . .
axm2−3 : StInst = R × R × {ac, bc} × R × R × R ∧ PaInst = R × R

axm4 : subscn4_2 ∈ Machine(StInst,EvInst , PaInst)
axm5 : Grd(subscn4_2) = {ev 	→ ((xSVp 	→ vSVp) 	→

(xSV 	→ vSV 	→ ctrl 	→ vSVBCInit 	→ tCruise_BC 	→ tBrake_BC )) |
(ev = BC_CruisetoAC ∧ ctrl = bc ∧ 1 ≤ tCruise_BC ∧ tBrake_BC 
= 0∧

precond(xSV + 2 ∗ (vSV + aMax) 	→ vSV + 2 ∗ aMax) = TRUE∧
vSV = vSVBCInit ∧ vSVp = vSVBCInit ∧ xSVp = xSV + vSVBCInit) ∨ . . .}

axm6 : BAP(subscn4_2) = {ev 	→ (((xSVp 	→ vSVp) 	→ (. . . 	→ tCruise_BC ) 	→
(xSV ′ 	→ vSV ′ 	→ ctrl′ 	→ . . . 	→ tCruise_BC ′)) | vSV ′ = vSV p ∧ xSV ′ = xSV p∧
(ev = BC_CruisetoAC ∧ ctrl′ = ac ∧ tCruise_BC ′ = tCruise_BC − 1) ∨ . . .}

. . .
thm1 : check_Machine_Consistency(subscn4_2)

END

Listing 5. Sub-scenario 4 represented as a context
To perform such a formal reasoning, the development of the AV controllers
using the so-called deep modelling instantiation technique is described. All con-
stituents of the AV controller models are explicitly formulated in terms of the

3 In the model, clauses in Safe4 related to l and a are abstracted away.
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EvtBTheo theory constructs. The Event-B models of AV controllers such as List-
ing 4 are represented in an Event-B context (Listing 5), and proof obligations
are described either as theorems or as WD conditions.

In this context, the generic parameters, Ev, St, Pa are instantiated with
EvInst, StInst, and PaInst, respectively. An enumerated set EvInst lists all the
autonomous vehicle events in axm1, a constant StInst represents autonomous
vehicle states defined in axiom axm2 as the Cartesian product of the variable
types, and another constant PaInst represents autonomous vehicle events param-
eters, in axiom axm3. In axm4, the autonomous vehicle machine subscn4_2 is
defined with type Machine(EvInst, StInst, PaInst). Additional axioms enable
the instantiation of various machine components using set comprehensions. For
example, Grd(subscn4_2) and BAP (subscn4_2) (defined in axm5 and axm6)
present respectively a set of guards and a collection of BAP predicates for the
autonomous vehicle machine subscn4_2.

Finally, the theorem thm1 is added, consisting of the check_Machine_Con-
sistency predicate, in order to check the WD conditions and POs generation of
the autonomous vehicle machine. Note that the RSS goals and subgoals are now
encoded in the theorem thm1. Indeed, when proving this theorem, these subgoals
are highlighted in the backward proof supported by the Rodin platform. They
are propagated in the proof tree as post-conditions of the events.

7 On-the-Fly Reachability Analysis

This section discusses advanced level formal reasoning using the EB4EB frame-
work and its temporal extensions. Due to space limitation, only two important
properties are presented below: deadlock-freeness and goal reachability.

7.1 Deadlock-Freeness of AV Controller

The controller’s deadlock-freeness is verified as follows:

THEORY Contro l l e rDead lock IMPORT EvtBTheo
TYPE PARAMETERS St ,Ev ,Pa
OPERATORS
DeadLockFreeController <predicate> (m : Machine(Ev, St, Pa),
controlEvts : P(EV ENT ), Goal : P(St))

well−definedness condition Machine_WellCons(m) ∧ controlEvts ⊆ Progress(m)
direct def init ion Inv(m) ∩ (St \ Goal) ⊆ ran(Grd(m)[controlEvts])

Listing 6. Theory of deadlock-freeness of the controller

Formalisation. In Listing 6, a new theory ControllerDeadlock is introduced,
allowing deadlock-freeness properties to be expressed in the context of AV con-
trollers. In this theory, a predicate operator DeadLockFreeController is defined
with three arguments: m, controlEvts, and Goal, where m is the AV controller
machine, controlEvts is a set of controller events, and Goal is a set of states
that satisfy the goal. Furthermore, a WD condition is supplied to ensure that
the defined operator is being used correctly. The required WD condition checks
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that the machine is well constructed (Machine_WelCons(m)) and that the
controller events are progress events (controlEvts ⊆ Progress(m)). The defini-
tion Inv(m)∩ (St\Goal) ⊆ ran(Grd(m)[controlEvts]) ensures that at least one
controller event of the controlEvts event set is enabled when the system does
not satisfy the Goal states while the invariants hold.

Application to the Case Study. The deadlock-freeness operator defined above is
used for analysing the pull over case study: a context subscenario4_2_deep-
_analyse extending subscenario4_2_deep of is defined, consisting of the theo-
rem:

DeadlockFreeController(subscn4_2 , Progress(subscn4_2), {xSV 	→ vSV . . . | vSV = 0}).

THEORY TheoGoalIsReached
IMPORT EvtBLiveness
TYPE PARAMETERS St ,Ev ,Pa
OPERATORS
GoalIsReached<predicate>

(m : Machine(Ev, St, Pa),
Goal : P(St), v : P(St × Z)

well−definedness condition
Machine_WellCons(m) ∧ v ∈ St → Z

direct def init ion
TLPersistence(m, Goal, v)

Listing 7. Goal reachability theory

This theorem uses the predicate
operator DeadlockFreeController pre-
viously formalised, in which m is the
subscn4_2 machine, controlEvts is the
set of progress events Progress(sub-
scn4_2), and Goal corresponds to stop-
ping the SV at vSV = 0. Whenever this
theorem is used, a PO is automatically
generated that must be proved for ensur-
ing deadlock-freeness of the AV controller.

7.2 Goal Reachability in AV Controller

The primary intent of this property is to ensure that GA-RSS goals are eventually
achieved. With this aim, the formalisation of liveness described in EB4EB [15]
is extended to integrate the aspects of GA-RSS as follows:

Formalisation. In Listing 7, a new theory TheoGoalIsReached is defined
that imports the previously developed liveness theory EvtBLiveness to access
the operators that define liveness POs. In this theory, a predicate operator
GoalIsReached is defined with three arguments: m, Goal and v, where m is
the autonomous vehicle machine, Goal is a set of states satisfying GA-RSS,
and v is a variant. Furthermore, a WD condition is supplied to ensure that the
defined operator is used correctly. The required WD condition is to check that
the machine is well constructed (Machine_WelCons(m)) and the variant v is
correctly defined as a total function from STATE to Z (v ∈ St → Z). The direct
definition of the operator relies on the TLPersistence (♦�) operator, entailing
the property that the goal must eventually hold forever.

Application to the Case Study. A context, subscenario4_2_deep_analyse,
extending the context subscenario4_deep is defined with a theorem:

GoalIsReached(subscn4_2, {xSV 	→ vSV 	→ . . . | vSV = 0}, variant)
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This theorem uses the predicate operator GoalIsReached, previously for-
malised, where machine m is subscn4_2, Goal is a set of states satisfying GA-
RSS, i.e. to stop the SV at vSV = 0, and variant is the variant. This variant is
defined as variant = 	xTgt−xSV

vMin 
 to be the number of cycles to reach the target
at the minimum speed. Note that the original development is not precise enough
for proving this property. Thus, additional axioms are added, such as the fact
that minimum brake power can bring the vehicle to a stop when it is at the
minimum speed in one cycle (vMin < aBrakeMin

2 ), which is required to discharge
the reachability theorem.

8 Assessment

Proof Factorisation and Simplification. The EB4EB framework allows
meta-level manipulation of several Event-B models simultaneously through the
deep embedding instantiation mechanism. However, the accompanying proofs
for different POs are performed at the classical Event-B machine level. Lifting
proofs at the meta level with an advanced factoring method can simplify such
proving processes as well as assist in automating proof tree isomorphisms. First,
factoring methods allow for proof processes to be performed at a higher level, as
represented by an isomorphic proof tree, and then classical proof steps can be
applied at a lower level of the proof tree associated to specific events.

For example, in the case study, the goal reachability PO is defined, where
the variant must decrease 	xTgt−xSV ′

vMin 
 < 	xTgt−xSV
vMin 
. Steps to decrease this

inequality to vMin < xSV ′ − xSV are taken for all events. The granularity
can be modified, and the factorisation can be defined for all events or for a
subset of events with do-cases. The factoring approach allows the factorisation
of ∼500 nodes in the proof tree for nine events in the case study. Note that the
total number of nodes in the reachability goal and deadlock-freeness POs after
factorisation is only 4289 and 4258, respectively, but the original POs of both
have more than 8000 nodes. Only 10% of the nodes in the proof correspond to
interactive proofs, while the remaining 80% correspond to typing proofs based
on Real theory, that can be mechanised easily. The last 10% correspond to
automatic nodes derived from Rodin’s tactic, also proved automatically.

Model Enhancement. The EB4EB framework can be used for advanced level
formal reasoning by adding new safety properties. These new properties would
not be planned during the initial development. Thus, some elements of the mod-
els may be weak or incomplete during the proof process of new properties, result-
ing in infeasible proofs. By adding additional invariants or theorems, tightening
the guard of events, or adding new hypotheses to the specification, the origi-
nal models can be improved to make them complete in order to discharge the
generated POs. The initial model of the case study is robust enough to prove
deadlock-freeness, however the proof of goal reachability reveals the presence of
the Zeno problem on the models. To solve this problem, a new requirement was
introduced: the actual speed must be greater than the minimum speed of the
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vehicle. The guards of the advanced controller events as well as the invariants
are modified to match the new requirements for discharging the domain POs

Generating Domain Specific POs. In the selected case study, several new
POs are introduced, such as deadlock-freeness and goal reachability. These POs
are not explicitly supported in the core Event-B. Their formalisation in Event-B
requires the expertise of the model designers and there are no reuse possibili-
ties as they need to be expressed each time a model is developed (manipulat-
ing guards, expressing variants and convergent events, etc.). In our approach,
these new POs are encoded using the EB4EB framework. Note that the EB4EB
framework may encode classical Event-B POs, but it can also be used to extend
additional POs linked to temporal concepts as well as domain-specific notions.
For example, the position and velocity cannot be negative, thus a new PO can
be encoded to generate this domain-specific property. Such POs are useful for
encapsulating standards during requirement modelling, and the EB4EB frame-
work also aids in the proving process based on domain-specific properties.

The interest of the approach is the capability to instantiate previously domain
specific POs voiding designers to define the POs themselves. We believe that this
approach promotes the dissemination of the use of formal methods by engineers.

9 Conclusion

This paper proposed a formal technique that allows a designer to verify domain-
specific temporal properties, deadlock-freeness, and goal reachability on AV con-
trollers based on GA-RSS. The extended reasoning mechanism of the reflex-
ive EB4EB framework is used to perform on-the-fly proof-based verification by
encoding the system’s domain specific requirements. The obtained framework
composes different formalised concepts like temporal logic or AVs’ domain gath-
ered in a unified setting. Other domain-specific concepts may be included as
well, provided that they are formalised as theories to be imported.

At this level, one may ask why the expression and verification of the proper-
ties studied in this paper are not achieved with classical Event-B machines. There
are two reasons for this. First, while Event-B is better suited for developing sys-
tem models and ensuring inductive invariant preservation, it does not preserve
liveness properties in refinement chains in general. Preserving such properties
requires the definition of decreasing variants and guaranteeing their convergence
at each refinement level. The same applies for deadlock. There is no automatic
proof obligation generation for such properties.

The whole formalisation and verification of sub-scenario 4.1 is illustrated in
Event-B using the EB4EB framework and the technique is demonstrated by
performing advanced-level proof of goal reachability in different pull over sce-
narios relying on GA-RSS. This proof was not feasible in previous development
due to the lack of support for liveness properties in core Event-B. In this work,
all machine-checked proofs are performed in the Event-B environment and the
model is instantiated for advanced level liveness properties to get full confidence
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in the developed model as well as to use proof artefacts as strong and explain-
able evidence to meet certification requirements. Due to space limitation, only
deadlock-freeness and goal reachability properties are demonstrated in the paper,
however all the developments presented in this paper are completely formalized,
and all proof obligations have been discharged. These developed models are
available on https://www.irit.fr/~Peter.Riviere/models/.

There are two imminent challenges identified. The first one is defining concise
and precise domain-specific engineering theories to cover every aspect of the GA-
RSS framework in order to define inbuilt operators for designing AV controllers
as well as to define new POs to meet systems goals. Additionally, this approach
can be exploited for certification purposes to meet industry safety standards for
AVs. Here, we target the definition of generic proof obligations formalising AVs
controllers standards.
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Abstract. Hyperproperties extend trace properties to express proper-
ties of sets of traces, and thus, they are increasingly popular in specifying
various security and performance-related properties in domains such as
autonomous, cyber-physical, and robotic systems. Specifically, Hyper-
properties for time window temporal logic (HyperTWTL) are known
for their compactness in specifying robotic systems’ safety and security
requirements. However, the existing model checking approach for Hyper-
TWTL verification relies on automata-based model checking, which is
computationally expensive and suffers from the state-space explosion
problem. This paper introduces a bounded model checking approach for
verifying HyperTWTL specifications using SMT solvers. Specifically, our
proposed verification method reduces the HyperTWTL model checking
problem to a first-order logic satisfiability problem and then uses state-of-
the-art SMT solvers, i.e., Z3 and CVC4, for verification. The feasibility of
the proposed HyperTWTL verification methods is demonstrated through
a Technical Surveillance Squadron (TESS), a Robotic Industrial Inspec-
tion case study, and also a scalability analysis. Our results show that the
proposed method can offer up to 19× speed up and 2× memory efficiency
compared to the traditional automata-based model checking approach.
We also show that the proposed HyperTWTL verification technique can
verify large systems, whereas the traditional HyperTWTL verification
method suffers from state-space explosion problem.

Keywords: Hyperproperties · Bounded Model Checking · Time
Window Temporal Logic and Robotics · SMT solver

1 Introduction

Hyperproperties [13] extend the notion of trace properties [1] from a set of traces
to a set of sets of traces. This allows specifying a wide range of properties related
to information-flow security [20,32], consistency models in concurrent comput-
ing [7,18], robustness models in cyber-physical systems [6,19], and also service
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level agreements (SLA) [13]. Several types of hyperproperties and their model
checking algorithms have been proposed in the recent past, including Hyper-
LTL [12,14,17,23], HyperSTL [25], HyperMTL [8,21], and HyperTWTL [9].
These formalisms has been successfully used to specify and verify important
requirements in different domains including cyber-physical systems, robotics and
machine learning. Specifically, for time-bounded and sequential tasks, Hyper-
TWTL offers a rich expresiveness and compactness. For instance, consider a
hyperproperty that requires that “for any pair of traces π and π′, A should hold
for 5 time steps in trace π within the time bound [0, 10] and B should also hold
for 3 time steps in trace π′ within the same time bound ”. This requirement can
be expressed using HyperTWTL formalism as ϕ = ∀π∀π′ ·[H5 Aπ ∧H3 Bπ′ ][0,10].
The same requirement can be expressed as a HyperSTL formula as ϕ =
∀π∀π′ ·(F[0,10−5]G[0,5]Aπ)∧(F[0,10−3]G[0,3]Bπ′). In HyperMTL this requirement
can be expressed as ϕ = ∀π∀π′ ·

∨10−5
i=0 G[i,i+5]Aπ ∧

∨10−3
i=0 G[i,i+3]Bπ′ .

HyperTWTL extends the classical Time Window Temporal Logic
(TWTL) [30] by allowing explicit and simultaneous quantification over multi-
ple execution traces. The classical approach for verifying HyperTWTL in [9]
relies on an automata-based model checking. Traditionally, automata-based
model checking is known for its high computation time, memory overhead,
and may lead to a state-space explosion. Hence, we propose a more efficient
and scalable approach in this paper. Specifically, we propose an SMT-based
approach to verify HyperTWTL properties by converting the model check-
ing problem to a first-order logic satisfiability problem. For example, given a
HyperTWTL formula ϕ = ∀π1.∀π2 · [H15Aπ1 ∧ H10Bπ2 ]

[0,20] and a collection
of Time Kripke structures (TKS) M = 〈M1,M2〉, where Mi is an identical
copy of the given Kripke structure mapped to the trace variable πi, the pro-
cess to convert both the ϕ and M to a first-order logic involves three main
steps. First, we compute the unrolling bound ||ϕ|| based on the structure of
the formula. Secondly, we encode the path quantifications, initial conditions,
the transition relations of each TKS Mi, and the negation of HyperTWTL for-
mula ϕ as first-order logic formula represented by the encoding [[Mi]]||ϕ|| and
[[¬ϕ]]||φ|| respectively. The combination of two encoded formulae is of the form
[[M ¬ϕ]]||ϕ|| = [∃1π1] · [∃2π2] · [[M1]]||ϕ|| ∧ [[M2]]||ϕ|| ∧ [[¬φ]]0,||ϕ||. Lastly, the com-
bined first-order logic formula unrolled to a depth of ||ϕ|| is then solved using
an off-the-shelf SMT solver. If the approach returns an affirmative answer, then
the SMT solver generates a counterexample. Though the proposed approach is
inspired by SMT-based bounded model checking (BMC), as earlier stated, the
unrolling bound is calculated using a given HyperTWTL formula. This con-
trasts with the traditional BMC approach for verifying temporal logic, where an
arbitrary unrolling bound is given.

To demonstrate the effectiveness of our approach, we formalize some inter-
esting requirements of two case studies using HyperTWTL. The first case study
we consider is a Technical Surveillance Squadron (TESS) [28], known for provid-
ing collaborative surveillance of designated regions to detect, identify, and locate
potential nuclear explosions. In the second case study, we consider a robotic solu-
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tion that automates industrial equipment inspections [2], where robots provide
plant operators the information to maximize equipment uptime and improve
safety and efficiency. We use two SMT solvers, CVC4 and Z3, both known for
their industrial application [4,29], to compare their performance for verifying
the HyperTWTL requirements. Finally, we compare our proposed SMT-based
HyperTWTL verification performance with automata-based HyperTWTL ver-
ification. We observe that our proposed SMT-based approach offers up to 19×
speed up in terms of execution speed and consumes up to 2× less memory when
compared to the automata-based HyperTWTL verification approach. We also
perform experiments to demonstrate the scalability of our approach and show
that we can verify large robotic systems, whereas the automata-based Hyper-
TWTL verification leads to the state-space explosion.

2 Preliminaries

Let AP be a finite set of atomic propositions and Σ = 2AP be the alphabet. We
call each member of Σ an event. We define a timed trace t as a finite sequence
of events from Σ∗, i.e., t = (τi, ei), (τi+1, ei+1), · · · (τn, en) ∈ (Z≥0 × Σ)∗ where
τiτi+1 · · · τn ∈ Z≥0 is a sequence of non-negative integers denoting time-stamps
and the indices i, n ∈ Z≥0 denote time-points. We require τi = 0, τi ≤ τi+1, and
for all i, 0 ≤ i ≤ n. For each timed trace t, by t[i].e, we mean ei and by t[i].τ we
mean τi. We now define an indexed timed trace as a pair (t, p) where p ∈ Z≥0 is
called a pointer. Indexed timed traces allow traversing a given trace by moving
the pointer. Given an indexed timed trace (t, p) and m ∈ Z≥0, let (t, p) + m
denote the resulting trace (t, p + m).

2.1 Kripke Structure

We consider timed systems modeled as timed Kripke structures with the assigned
time elapse on the transitions.

Definition 1. A timed Kripke structure (TKS) is a tuple M = (S, Sinit,
δ, AP,L) where

– S is a finite set of states;
– Sinit ⊆ S is the set of initial states;
– δ ⊆ S × Z≥0 × S is a set of transitions;
– AP is a finite set of atomic propositions; and
– L : S → Σ is a labelling function on the states of M.
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Fig. 1. Timed Kripke structure

We require that for each s ∈ S,
there exists a successor that can be
reached in a finite number of transi-
tions. Hence, all nodes without any out-
going transitions are equipped with self-
loops such that (s, 1, s) ∈ δ. An exem-
plary TKS is shown in Fig. 1 where
S = {S0, S1, S2, S3, S4, S5}, Sinit =
{S0}, δ = {(S0, 1, S1), (S0, 2, S3),
(S1, 3, S2), (S1, 1, S3), (S2, 1, S4), (S2, 1, S5),
(S3, 2, S2), (S3, 3, S4), (S4, 1, S4), (S4, 1, S5),
(S5, 1, S5)}, L(S0) = {}, L(S1) = {a, b}, L(S2) = {a}, L(S3) = {a, b}, L(S4) =
{a}, L(S5) = {a, b} and AP = {a, b, c, d}. A path over a TKS is an finite sequence
of states S0S1S2 . . . Sn ∈ Σ∗, where S0 ∈ Sinit and (Si, di, Si+1) ∈ δ, for each
0 ≤ i < n. A trace over TKS is of the form: t = (τ0, e0)(τ1, e1)(τ2, e2) . . . (τn, en),
such that there exists a path S0S1S2 · · · ∈ S∗. Recall an event is of the form
(τi, ei) where τi ∈ Z≥0 and ei = L(Si).

2.2 HyperTWTL

HyperTWTL [9] is a hyper-temporal logic to specify hyperproperties for Time
Window Temporal Logic (TWTL) [30] by extending TWTL with quantification
over multiple and concurrent execution traces. Below we present the syntax of
HyperTWTL.

Syntax of HyperTWTL: The syntax of HyperTWTL [9] is inductively defined
by the grammar:

ϕ := ∃π · ϕ | ∀π · ϕ | φ

φ := Hdaπ | Hd¬aπ | φ1 ∧ φ2 | ¬φ | φ1 � φ2 | [φ]I | Eρ · ψ | Aρ · ψ

ψ := Hdaπ,ρ | Hd¬aπ,ρ | ψ1 ∧ ψ2 | ¬ψ | ψ1 � ψ2 | [ψ]I,J

where a ∈ AP , π is a trace variable from a set of trace variables V and ρ is a
trajectory variable from the set P. Thus, given aπ,ρ, the proposition a ∈ AP
holds in trace π and trajectory ρ (explained in Appendix) at a given time point.
Trace quantifiers ∃π, and ∀π are interpreted as “there exists some trace π” and
“for all the traces π”, respectively. Similarly, trajectory quantifiers Eρ and Aρ
allow reasoning simultaneously about different trajectories. The quantifier Eρ
means there exists at least one trajectory ρ that evaluates the relative passage
of time between the traces for which the given inner temporal formula is satisfied.
In contrast, Aρ is interpreted as all trajectories ρ satisfy the inner TWTL formula
regardless of the time passage across traces. The operators Hd, �, and [ ]I (as
well as [ ]I,J ) represent the hold operator with d ∈ Z≥0, concatenation operator,
and within operator respectively, while both I and J are discrete-time constant
intervals of form [τ, τ ′], where τ, τ ′ ∈ Z≥0 and τ ′ ≥ τ , respectively and ∧ and
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¬ are the conjunction and negation operators respectively. Trace quantifiers ∃π
and ∀π, allow for the simultaneous reasoning about different traces. Given a
HyperTWTL formula ϕ, we denote Vϕ (respectively Pϕ) as the set of trace
variables (respectively, trajectory variables) quantified in ϕ. Thus, we say a given
formula ϕ is closed if for aπ,ρ in ϕ, π and ρ are quantified in ϕ (π ∈ Vϕ and
ρ ∈ Pϕ) and no π and ρ is quantified twice in ϕ. The disjunction operator
(∨) can be derived from the negation and conjunction operators. Likewise, the
implication operator (→) can also be derived from the negation and disjunction
operators.

Table 1. Synchronous semantics of HyperTWTL

(T, Π) |= ∃π.ϕ iff ∃t ∈ T · (T, Π[π → (t, 0)]) |= ϕ

(T, Π) |= ∀π.ϕ iff ∀t ∈ T · (T, Π[π → (t, 0)]) |= ϕ

(T, Π) |= Hdaπ iff a ∈ t[i].e for (t, p) = Π(π), ∀p ∈ {i, ..., i + d} ∧ (t[i + n].τ−
t[i].τ) ≥ d, for some n > 0 and i ≥ 0

(T, Π) |= Hd¬aπ iff a /∈ t[i].e for (t, p) = Π(π), ∀p ∈ {i, ..., i + d} ∧ (t[i + n].τ−
t[n].τ) ≥ d, for some n > 0 and i ≥ 0

(T, Π) |= φ1 ∧ φ2 iff ((T, Π) |= φ1) ∧ ((T, Π) |= φ2)

(T, Π) |= ¬φ iff ¬((T, Π) |= φ)

(T, Π) |= φ1 � φ2 iff ∃i, j, k s.t. i ≤ k ≤ j and k = min k′ | i ≤ k′ ≤ j, (T[i,k], Π) |= φ1 ∧
((T[k+1,j], Π) |= φ2) for some i, j ≥ 0

(T, Π) |= [φ][x,y] iff ∃i, j, k and k ≥ i + x, s.t. (T[k,i+y], Π) |= φ ∧ ((Π)j− (Π)now) ≥ y

for some i, j ≥ 0

Semantics of HyperTWTL: The semantics of HyperTWTL [9] can be divided
into synchronous and asynchronous based on the timestamps in all quantified
traces that match at each point in time or proceed at different speeds, respec-
tively. We denote the set of trace variables used in a given HyperTWTL formula
ϕ as Vϕ. We define a collection of copies of TKS as M = 〈Mi〉πi∈Vϕ

, where each
Mi is an identical copy of a given TKS used to represent path πi. We therefore
denote a set of traces over M as T. Thus, for any given HyperTWTL formula ϕ,
we interpret T = 〈Tπi

〉πi∈Vϕ
as the tuple of sets of traces with a set Tπi

assigned
to πi ∈ Vϕ. Thus, for a given collection of TKS M, we define Tπi

as the set
of traces over the trace variable πi coming from Mi. For any given set of sets
of traces denoted as T[i,j], we say the evaluation of all the traces in T against
a formula starts from the time-point i ≥ 0 up to and including the time-point
j ≥ i. Both semantics of HyperTWTL are presented below.

Synchronous Semantics of HyperTWTL: We define an assignment Π : V →
(Z≥0 ×Σ)∗ ×Z≥0 as a partial function mapping trace variables to time-stamped
traces. Let Π(π) = (t, p) denote the time-stamped event from trace t at position
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p currently employed in considering trace π. We then denote the explicit mapping
of the trace variable π to a trace t ∈ T at position p as Π[π → (t, p)]. Thus,
by Π(π) = (t, p), we mean the event from the timed trace t at the position p is
currently used in the analysis of trace π. Given the mapping Π, we use (Π)+k as
the kth successor of Π, i.e., the kth timed event of a mapped trace reached after
moving k steps across Π. The hold operator Hdaπ states that the proposition
a will be repeated for d time units in trace π. Similarly Hd¬aπ, requires that
for d time units the proposition a should not occur in trace π. The trace set T

satisfies both sub-formulae in φ = φ1∧φ2 while in ¬φ, T does not satisfy the given
formula. A given formula with a concatenation operator in the form φ = φ1 �φ2

specifies that every t ∈ T should satisfy φ1 first and then immediately φ2 must
also be satisfied with one-time unit difference between the end of execution of φ1

and the start of execution of φ2. The trace set T must satisfy φ between the time
window within the time window [τ, τ ′] given φ = [φ][τ,τ ′]. Given Π, we define
the the current instant denoted as (Π)now and the jth instant denoted as (Π)j

as follows [8]:

(Π)now = max
π∈dom(Π)

{t[p].τ | for Π(π) = (t, p)}

(Π)j = min
π∈dom(Π)

{t[p + j].τ | for Π(π) = (t, p)}

We say a collection of traces T generated over a collection of TKS M sat-
isfies a synchronous HyperTWTL formula ϕ if (T,Π) |=s ϕ. We present the
synchronous semantics of HyperTWTL in Table 1.

Asynchronous Semantics of HyperTWTL: To define the Asynchronous
semantics of HyperTWTL, we adopt the concept of trajectory as used in [23].
For a given HyperTWTL formula, a trajectory v = vivi+1vi+2 · · · is a sequence
of subsets of Pϕ, i.e. vi ⊂ Pϕ,∀i ≥ 0. We call a trajectory a fair trajectory
if, for a trace variable π ∈ Pϕ, there are infinitely many positions i such that
π ∈ vi. We denote RP as the set of all fair trajectories for indices from the set of
trajectories P. We now define the trajectory mapping Γ : Pϕ → Rdom(Γ ), where
dom(Γ ) ⊂ Pϕ for which Γ is defined. We then denote the explicit mapping of
the trajectory variable ρ to a trajectory v as Γ [ρ → v]. Given (Π,Γ ) where Π
and Γ are the trace mapping as used in the definition of Synchronous semantics
of HyperTWTL and trajectory mapping respectively, we use (Π,Γ ) + k as the
kth successor of (Π,Γ ), i.e. the kth reached can be reached after k steps from
(Π,Γ ). In defining the semantics of Asynchronous HyperTWTL, we employ the
asynchronous assignment Π : Vϕ ×Pϕ → T×Z≥0 which maps each pair of trace
variable and trajectory variable, (π, ρ), into an indexed trace. Given a trace map-
ping Π, a trace variable π, a trajectory variable ρ, a trace t, and a pointer n,
we denote the assignment that coincides with Π for every pair except for (π, ρ)
which is mapped to (t, n) as Π[(π, ρ) → (t, n)]. By Π(π, ρ) = (t, p), we mean the
event from the timed trace t at the position p is currently used in the analysis
of trace and trajectory, π and ρ, respectively.

Let us recall that the hold operator Hdaπ,ρ states that the proposition a is
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to be repeated for d time units in trace π and trajectory ρ. Similarly Hd¬aπ,ρ,
requires that for d time units the proposition a should not be repeated in trace
π and trajectory ρ. The trace set T satisfies both sub-formulae in φ = ψ1 ∧ ψ2

while in ¬ψ, T, does not satisfy the given formula. A given formula with a con-
catenation operator in the form ψ1 �ψ2 specifies that every t ∈ T should satisfy
φ1 first and then immediately φ2 must also be satisfied with one-time unit dif-
ference between the end of execution of φ1 and the start of execution of φ2. The
intended meaning of [φ]I,J where I = [τ, τ ′] and J = [x, y] is the trace set T

must satisfy φ within the time window [τ, τ ′] while the difference in time elapse
between any pair of traces in the set T must be between [x, y].

For any given HyperTWTL formula ϕ we denote Δ as a map from Vϕ → Z≥0

returns the time duration for each π in dom(Δ). We say Δ ∈ [τ, τ ′] whenever
for all π ∈ dom(Δ), Δ(π) ∈ [τ, τ ′]. Similarly, we say Δ ∈ [x, y] whenever for all
distinct π, π′ ∈ dom(Δ), |Δ(π′)−Δ(π)| ∈ [x, y]. Given two indexed trace assign-
ments Π and Π ′ defined within the same domain dom(Π) = dom(Π ′), we denote
Δ(Π,Π ′)(π) as the map from Vϕ → Z≥0 that returns the time duration for
each trace assignment as Δ(Π,Π ′)(π) = (Π ′(π)).τ − (Π(π)).τ . Likewise, given
two distinct indexed trace and trajectory assignments (Π,Γ ) and (Π ′, Γ ′) of the
same domain, we denote Δj((Π,Γ ), (Π ′, Γ )) as the duration of time that elapses
from the current evaluation instant to the evaluation instance obtained after j
steps. This is defined formally as Δj((Π,Γ ), (Π ′, Γ ′)) = Δ(Π,Π ′)(π), where
(Π ′, Γ ′) = (Π,Γ )j . Now, we denote the satisfaction of asynchronous semantics
of HyperTWTL formula ϕ over trace mapping Π, trajectory mapping Γ , and a
set of traces T as (T,Π, Γ ) |=a ϕ. The asynchronous semantics of HyperTWTL
is presented in Table 2.

Table 2. Asynchronous semantics of HyperTWTL

(T, Π, Γ ) |=a ∃π.ϕ iff ∃t ∈ T · (T, Π[(π, ρ) → (t, 0)], Γ ) |=a ϕ for all ρ

(T, Π, Γ ) |=a ∀π.ϕ iff ∀t ∈ T · (T, Π[(π, ρ) → (t, 0)], Γ ) |=a ϕ for all ρ

(T, Π, Γ ) |=a Eρ.ϕ iff ∃v ∈ Rrange(Γ ) : (T, Π, Γ [ρ → v]) |=a ϕ

(T, Π, Γ ) |=a Aρ.ϕ iff ∀v ∈ Rrange(Γ ) : (T, Π, Γ [ρ → v]) |=a ϕ

(T, Π, Γ ) |=a Hdaπ,ρ iff a ∈ t[i].e for (t, p) = Π(π, ρ), ∀p ∈ {i, ..., i + d} ∧
(t[i + n].τ − t[i].τ) ≥ d, for some n > 0 and i < d

(T, Π, Γ ) |=a Hd¬aπ,ρ iff a /∈ t[i].e for (t, p) = Π(π, ρ), ∀p ∈ {i, ..., i + d} ∧
(t[i + n].τ − t[i].τ) ≥ d, for some n > 0 and i < d

(T, Π, Γ ) |=a ψ1 ∧ ψ2 iff ((T, Π, Γ ) |=a ψ1) ∧ ((T, Π, Γ ) |=a ψ2)

(T, Π, Γ ) |=a ¬ψ iff ¬((T, Π, Γ ) |=a ψ)

(T, Π, Γ ) |=a ψ1 � ψ2 iff ∃i, j, k s.t. i ≤ k ≤ j and k = min k′ | i ≤ k′ ≤ j,
((T[i,k], Π, Γ ) |=a ψ1), ∧ ((T[k+1,j], Π, Γ ) |=a ψ2)

for some i, j ≥ 0

(T, Π, Γ ) |=a [ψ][τ,τ ′],[x,y] iff ∃i, j, k s.t. k ≥ i + τ , (T[k,i+τ ′], Π, Γ ) |=a ψ ∧
|Δ((Π + j) − Π)| ∈ [τ, τ ′] ∧ |Δj((Π, Γ ), (Π ′, Γ ′))| ∈ [x, y],
for some i, j > 0
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3 SMT-Based Model Checking for HyperTWTL

Given a collection of TKS M, a HyperTWTL formula ϕ, and an unrolling bound
||ϕ|| (discussed in the next section), the model checking problem is to determine
whether M |= ϕ. We assume that the input formula ϕ has been converted
into a negation-normal form (NNF) denoted as ¬ϕ. The model checking app-
roach takes as an input NNF of the HyperTWTL formula ¬ϕ and TKS M. Let
us recall from Sect. 2 that ϕ can be either a synchronous or an asynchronous
HyperTWTL formula. In the latter case, we need to translate the asynchronous
HyperTWTL formula to an equivalent synchronous HyperTWTL formula. To
achieve this, we first generate a set of invariant traces inv(T) from a trace set
T generated over the TKS M. We then construct an equivalent synchronous
formula ϕs from the asynchronous formula ϕs such that T |=a ϕa if and only if
inv(T) |=s ϕs. For more details on this approach of converting an asynchronous
HyperTWTL formula to an equivalent synchronous HyperTWTL formula, we
refer the readers to the Appendix. Next, the TKS M and NNF of the Hyper-
TWTL formula ¬ϕ are fed into an SMT encoder to generate a first-order logic
formula of the form [[M,¬ϕ]]||ϕ|| by encoding the initial condition, the transi-
tion relations, and unrolling M and ¬ϕ to a depth of ||ϕ||. Finally, we utilize
off-the-shelf SMT solvers to solve the first order logic formula [[M,¬ϕ]]||ϕ|| and
determine if M |= ¬ϕ. If the SMT returns true, then a counterexample has been
identified, otherwise, M |= ϕ holds.

3.1 Calculating Unrolling Bound from HyperTWTL

The satisfaction of a HyperTWTL formula can be decided within a fixed time
bound. Let ||ϕ|| denote the maximum time needed to satisfy the HyperTWTL
formula ϕ and it can be computed as follows:

||ϕ|| =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

||ϕ|| if ϕ ∈ {∃π · ϕ, ∀π · ϕ}
d if ϕ ∈ {Hdaπ,Hd¬aπ}

max(||φ1||, ||φ2||) if ϕ ∈ {φ1 ∧ φ2, φ1 ∨ φ2}
||φ|| if ϕ = ¬φ

||φ1|| + ||φ2|| + 1 if ϕ = φ1 � φ2

τ ′ if ϕ ∈ {[φ1]
[τ,τ ′]}

(1)

We use the computed deadline ||ϕ|| as the unrolling bound to determine the
satisfiability of a HyperTWTL formula. Note, this contrasts the traditional BMC
techniques which uses a given arbitrary unrolling bound.

Example 1. Let us consider a HyperTWTL formula ϕ as follows.

ϕ1 = ∀π1∃π2 · [H2aπ1 ∧ H2aπ2 ]
[0,2] � [H2aπ1 ∨ H2bπ2 ]

[3,7] (2)

Using Eq. (1), we can calculate ||ϕ1|| = 10 time units.
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3.2 Encoding the TKS

Fig. 2. TKS M

The encoding of a collection of TKS M upto
bound ||ϕ|| into a first-order logic formula is
inspired by the BMC encoding of LTL [3].
Intuitively, the states of the M are repre-
sented by a set of variables S. Let Si be new
copies of S, where i ∈ [0, ||ϕ||] which cap-
tures the evolution of states over time. Con-
sider the HyperTWTL formula ϕ1 in Eq. (2) above, we use two identical copies
of a given TKS to represent different paths π1 and π2 on the TKS, denoted as
M1 and M2, i.e. M = 〈M1,M2〉. Therefore, for each copy Mi, we unroll the
transition relation [[Mi]]||ϕ1|| as follows.

[[Mi]]||ϕ1|| = I(S0) ∧
||ϕ1||−1∧

i=0

R(Si, Si+1) (3)

In Eq. (3), I(S0) is the characteristic function that encodes the initial states
and R(Si, Si+1) is the function that encodes transition relation for states in Si

and their successor states in Si+1 between time steps i and i + 1.

Example 2. Consider the Kripke structure in Fig. 2 and a HyperTWTL for-
mula

ϕ2 = ∀π1∀π2 · [H3aπ1 ∧ H3bπ2 ]
[0,3] (4)

For a bound ||ϕ2|| = 3, we unroll the transition relation for copy M1 as follows.

[[M1]]||3|| = I(S0) ∧ R(S0, S1) ∧ R(S1, S2) ∧ R(S2, S3) (5)

3.3 Encoding the Inner TWTL Formula

Let ϕ be a HyperTWTL formula of the form ϕ = Q1π1 . . . Qnπn · φ where each
Qj ∈ {∀,∃} (j ∈ [1, n]) and φ is the inner TWTL formula. For each j ∈ [1, n],
the path quantification Qjπj is represented by

[Qjπj ] = QjS0QjS1 · · · QjS||ϕ||−1 (6)

Given the negated formula ¬ϕ, we unroll the TWTL formula on a path π,
with bound ||ϕ|| resulting in a first-order logic formula which can be inductively
defined in Table 3.

Example 3. Consider the HyperTWTL formula ϕ2 in Eq. (4) above. The nega-
tion of Eq. (4) (refer Theorem 1) can be expressed as follows.

¬ϕ2 = ∃π1∃π2 · [H3¬aπ1 ∨ H3¬bπ2 ]
[0,3]

︸ ︷︷ ︸
¬φ

(7)



Efficient SMT-Based Model Checking for HyperTWTL 341

Table 3. Encoding the inner TWTL formula

[[Hd aπ]]i,||ϕ|| := [[Hdaπ]]i∀i ≤ ||ϕ||
[[Hd ¬aπ]]i,||ϕ|| := [[Hd¬aπ]]i ∀i ≤ ||ϕ||
[[φ1 ∧ φ2]]i,||ϕ|| := [[φ1]]i,||ϕ|| ∧ [[φ2]]i,||ϕ||, ∀i ≤ ||ϕ||
[[¬φ]]i,||ϕ|| :=¬[[φ]]i,||ϕ||, ∀i ≤ ||ϕ||
[[φ1 � φ2]]i,||ϕ|| := ∃k = argmini≤k≤||ϕ|| [[φ1]]i,k∧

[[φ2]]k+1,||ϕ||∀i ≤ ||ϕ||
[[[φ][τ,τ ′]]]i,||ϕ|| := ∃k ≥ i+τ, s.t.[[φ]]k,i+τ ∧(||ϕ||−i ≥ τ ′),

∀i ≤ ||ϕ||

From the structure of Eq. (7), the inner TWTL formula ¬φ is given as ¬φ =
[H3¬aπ1 ∨H3¬bπ2 ]

[0,3]. Based on Table 3, unrolling ¬φ with a computed bound
||¬ϕ2|| = 3 can be expressed as follows.

[[¬φ]]0,[3] = [H3¬aπ1 ∨ H3¬bπ2 ]
[0,3]
0 ∧ [H3¬aπ1 ∨ H3¬bπ2 ]

[0,3]
1

∧ [H3¬aπ1 ∨ H3¬bπ2 ]
[0,3]
2 ∧ [H3¬aπ1 ∨ H3¬bπ2 ]

[0,3]
3

(8)

3.4 Combining the Encodings

Given a HyperTWTL formula of the form ϕ = Q1π1 . . . Qnπn ·φ and a collection
of TKS M = 〈M1, · · · ,Mn〉, the verification problem of HyperTWTL specifica-
tions can be formulated by constructing the first-order logic formula [[M,¬ϕ]]||ϕ||
as follows.

[[M, ¬ϕ]]||ϕ|| = [Q1π1] . . . [Qnπn] · [[M1]]||ϕ|| �1 . . . [[Mn]]||ϕ|| �n [[¬φ]]0,||ϕ|| (9)

where [Qjπj ] for j ∈ [1, n] is defined in (6), [[Mj ]]||ϕ|| for j ∈ [1, n] is defined in
(3), �i = ∧ if Qi = ∃, and �i = → if Qi = ∀, for i ∈ Vϕ and ¬φ is the negated
inner TWTL formula φ of the HyperTWTL formula ϕ.

Example 4. Let us consider the Kripke structure in Fig. 1 and the HyperTWTL
formula ϕ = ∀π1∀π2 · [H3aπ1 ∧ H3bπ2 ]

[0,3] with ||ϕ|| = 3. Let M = 〈M1,M2〉
denote identical collection of the Kripke structure representing paths π1 and
π2 respectively. The resulting combined first-order logic formula to be solved is
given as follows.

[[M, ¬ϕ]]3 = [∃1π1] · [∃2π2] · [[M1]]3 ∧ [[M2]]3 ∧ [[¬φ]]0,3 (10)

Theorem 1. Given a collection TKS M, a HyperTWTL formula ϕ with an
unrolling bound of ||ϕ|| and sets of traces T over M, if [[M,¬ϕ]]||ϕ|| is satisfiable,
i.e. (T,Π) �|=s ϕ, then M �|=s ϕ.
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4 Experimental Results

To demonstrate the effectiveness of our approach, we consider two case studies
and compare their performance with the automata-based HyperTWTL model
checking approach [9]. We present the details of these case studies and the
obtained results in the following sections.

4.1 Case Study I: Autonomous Security Robots

Our Case Study-1 resembles a security patrol within a community with multi-
ple autonomous security robots [24]. In this case study, the autonomous security
robots are augmented with intelligent video surveillance systems that move along
patrol routes to different areas while identifying potential intruders, incidents,
crimes, etc., and relaying information to an operator in a remote base station for
data processing. Let us consider an environment to be patrolled in Fig. 3 which
is composed of 2 initial positions I1 and I2, 2 charging stations C1 and C2, 12
allowable states P1, . . . , P12 and 4 regions of interest to be patroled R1 to R4.
Each patrol starts from any of the initial states (grey) and subsequently proceeds
along the patrol routes through the allowable states (white). On each patrol, it
is required each security robot surveils all regions of interest (blue) before pro-
ceeding to any of the charging stations (yellow). We abstract the patrol environ-
ment into a weighted graph where the nodes represent the initial states, charg-
ing stations, allowable states, and regions of interest, while the edges represent
transitions between the nodes, and the assigned weights represent travel times
associated with the transitions. We further abstract the motion of each security
robot into a transition system derived from the patrol environment by splitting
all transitions to have an edge weight of 1 time unit. Based on this case study,

Table 4. Requirements expressed in HyperTWTL in Case Study I

No. Description HyperTWTL Specification

1 Mutation
Testing

ϕ1 = ∃π1∀π2 · [Hd tm
π1

∧ Hd t¬m
π2

][0,T9] ∧ [H1 Iπ1 = H1 Iπ2 ]
[0,T1] 


[H1 R1π1 ∧ H1 R1π2 ]
[T2,T3] 
 [H1 R2π1 ∧ H1 R2π1 ]

[T4,T5]

[H1 R3π2 ∧ H1 R3π2 ]

[T6,T7] 
 [H1 R4π1 ∧ H1 R4π2 ]
[T8,T9] 


[H1 Cπ1 �= H1 Cπ2 ]
[T10,T11], where d = T9

2 Opacity ϕ2 = ∃π1∃π2 · [H1 Iπ1 ∧ H1 Iπ2 ]
[0,T1] 
 [H1 R1π1 ∧ H1 R1π2 ]

[T2,T3]


 [H1 R2π1 ∧ H1 R2π1 ]
[T4,T5]
 [H1 R3π2 ∧ H1 R3π2 ]

[T6,T7]


 [H1 R4π1 ∧ H1 R4π2 ]
[T8,T9]) 
 [H1 Cπ1 ∧ H1 Cπ2 ]

[T10,T11]

3 Side-Channel
Timing
Attacks

ϕ3 = ∀π1∀π2 ·AρEρ′ · [H1 Iπ1,ρ ∧ H1 Iπ2,ρ′ ][0,T1] → [H1 R1π1,ρ ∧
H1 R1π2,ρ′ ][T2,T3] 
 [H1 R2π1,ρ ∧ H1 R2π1,ρ]

[T4,T5] 
[H1 R3π2,ρ′ ∧
H1 R3π2,ρ′ ][T6,T7] 
 [H1 R4π1,ρ ∧ H1 R4π2,ρ′ ][T8,T9] 
 [H1 Cπ1,ρ ∧
H1 Cπ2,ρ′ ][T10,T11]

4 Non-
Interference

ϕ4 = ∀π1∃π2 · Aρ · [H1 Iπ1,ρ �= H1 Iπ2,ρ]
[0,T1] → [H1 R1π1,ρ ∧

H1 R1π2,ρ]
[T2,T3] 
 [H1 R2π1,ρ ∧ H1 R2π1,ρ]

[T4,T5]
 [H1 R3π2,ρ ∧
H1 R3π2,ρ]

[T6,T7] 
 [H1 R4π1,ρ ∧ H1 R4π2,ρ]
[T8,T9] 
 [H1 Cπ1,ρ =

H1 Cπ2,ρ]
[T10,T11]
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Fig. 3. The Patrol environment

we consider 4 different scenarios with 4 different HyperTWTL specifications,
including mutation testing, opacity, side-channel attacks and non-interference.
We formalize these requirements in HyperTWTL as follows. Note, in ϕ2 and all
subsequent formulae, “=” is not an arithmetic operator but a notation of sim-
plification such that [H1 Iπ1 = H1 Iπ2 ] stands for

∧
i∈I([H

1 iπ1 ∧ H1 iπ2 ]).

Requirement 1 (Mutation Testing): An interesting application of hyper-
property is the efficient generation of test cases for mutation testing. Let us
assume that traces from all robots within the surveillance system are labeled
as either mutated (tm) or non-mutated (t¬m). We map tm to π1 and all other
non-mutated traces t¬m to π2. This requirement guarantees that even if π2 starts
from the same initial state (I1 or I2) as π1, they eventually proceed to different
charging states (C1 or C2). This can be formalized as a synchronous Hyper-
TWTL formula ϕ1 as shown in Table 4.

Requirement 2 (Opacity): Information-flow security policies define what
users can learn about a system while (partially) observing the system. A system
is said to be opaque if it meets two requirements: (i) there exist at least two
executions of the system mapped to π1 and π2 with the same observations but
bearing a distinct secret, and (ii) the secret of each path cannot be accurately
determined only by observing the system. For example, let the surveillance route
be secret, and the initial state I1 or I2 be the only information a system user
can observe. This can be formalized as a synchronous HyperTWTL formula ϕ2

as shown in Table 4.

Requirement 3 (Side-Channel Timing Attacks): A side-channel timing
attack is a security threat that attempts to acquire sensitive information from
the surveillance mission by exploiting the execution time of the mission. Let us
assume two security robots start from any initial states I1 or I2 simultaneously,
and their executions are mapped to π1 and π2, respectively. To design a coun-
termeasure against this attack, it is required that for any pair of executions, if
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Table 5. Verification results of HyperTWTL properties for Case Study I

HyperTWTL Req. Description Verdict Z3 CVC4 AMC
Time (s) Memory (MB) Time (s) Memory (MB) Time (s) Memory (MB)

ϕ1 Mutation Testing SAT 1.450 8.604 0.844 10.554 16.103 16.893
ϕ2 Opacity UNSAT 1.453 8.691 0.892 10.564 15.952 17.110
ϕ3 Side-Channel Timing Attacks SAT 1.427 8.613 0.839 10.415 16.186 16.950
ϕ4 Non-Interference SAT 1.421 8.611 0.885 10.425 16.225 16.832

Table 6. Verification time for HyperTWTL properties for Case Study I

HyperTWTL properties Z3 (s) CVC4 (s) AMC (s)
Unrolling bounds (||ϕ||) Unrolling bounds (||ϕ||) Unrolling bounds (||ϕ||)
51 75 100 125 51 75 100 125 51 75 100 125

ϕ1 1.450 2.588 3.629 4.741 0.844 1.775 2.772 3.682 16.103 17.165 18.386 19.507
ϕ2 1.453 2.541 3.652 4.782 0.892 1.744 2.628 3.671 15.952 16.285 17.733 18.895
ϕ3 1.427 2.573 3.681 4.794 0.839 1.710 2.631 3.766 16.189 17.085 18.386 19.297
ϕ4 1.421 2.595 3.648 4.766 0.885 1.725 2.711 3.729 16.225 17.198 18.738 19.098

both robots start from any initial states simultaneously, they should reach the
charging state C1 or C2 within close enough time after finishing their surveil-
lance tasks. This can be formalized as an asynchronous HyperTWTL formula
ϕ3 as shown in Table 4.

Requirement 4 (Non-interference): Non-interference is a security policy
that seeks to restrict the flow of information within a system. This policy requires
that low-security variables be independent of high-security variables, i.e., one
should not be able to infer information about a high-security variable by observ-
ing low-security variables. For a set of traces, let us assume that the initial state
I1 or I2 is a high variable (high security) and paths from initial states to charg-
ing states C1 or C2 through R1, . . . , R6 denote low variable (low security). The
surveillance system satisfies non-interference if, for all executions, there exists
another execution that starts from a different high variable (i.e., the initial states
are different), and at the end of the mission, they are in the same low variable
states (i.e., charging states C1 or C2 are the same). This can be formalized as
an asynchronous HyperTWTL formula ϕ4 as shown in Table 4.

Table 7. Memory consumption for HyperTWTL verification for Case Study I

HyperTWTL properties Z3 (MB) CVC4 (MB) AMC (MB)
Unrolling bounds (||ϕ||) Unrolling bounds (||ϕ||) Unrolling bounds (||ϕ||)
51 75 100 125 51 75 100 125 51 75 100 125

ϕ1 8.604 13.965 20.091 24.214 10.554 16.117 23.343 27.868 17.933 19.573 26.304 32.830
ϕ2 8.691 13.883 20.082 24.253 10.564 16.065 22.957 27.748 16.057 18.463 25.457 31.487
ϕ3 8.613 13.834 20.051 24.269 10.415 16.219 23.117 27.445 17.578 19.931 26.647 31.608
ϕ4 8.611 13.840 20.067 24.283 10.425 16.269 23.002 27.678 17.711 19.156 26.483 31.372
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4.2 Case Study 1: Experimental Results

The conversion from the TKS and the HyperTWTL specifications to first-
order logic expressions (resembling Eq. (9)) is implemented in Python 3.7. The
obtained first-order logic formula is then fed to Z3 and CVC4 SMT solvers for
verification on a Windows 10 system with 64 GB RAM and Intel Core(TM)
i9-10900 CPU (3.70GHz). Z3 and CVC4 are widely known for their industrial
applications [4,29]. The following time bounds are considered for the verification
of all the HyperTWTL properties in Table 4: T1 = 1, T2 = 2, T3 = 3, T4 =
4, T5 = 7, T6 = 8, T7 = 9, T8 = 10, T9 = 12, T10 = 13 and T13 = 15. Since the
time bounds are the same for HyperTWTL formulae from ϕ1–ϕ4, their unrolling
bound is also the same, i.e., ||ϕ|| = 51.

In the first set of experiments, we verify the HyperTWTL specifications
using the Z3 and CVC4 SMT solvers and compare them with the automata-
based model checking (AMC) approach in [9]. The obtained results are shown
in Table 5. Note, since ϕ3 and ϕ4 are asynchronous HyperTWTL specifications,
we convert them to equivalent synchronous HyperTWTL specifications follow-
ing the method described in [9] before running these experiments. We observe
that specifications ϕ1, ϕ3 and ϕ4 were satisfied using both Z3 and CVC4 as well
as the AMC approach, whereas ϕ2 was unsatisfied. We also observe that the
verification time of the HyperTWTL formulae never exceeded 1.453 seconds in
Z3 and 0.892 seconds in CVC4. In contrast, it took up to 16.225 seconds in the
AMC approach to verify these properties. This shows a 11× and 19× speed up
for Z3 and CVC4, respectively, regarding execution time. Regarding the memory
consumption, verifying these specifications using Z3 and CVC4 never exceeded
8.691 MB and 10.564 MB, respectively. In contrast, AMC consumed up to 17.110
MB of memory. This shows that our SMT-based verification approach is 2× and
1.6× more memory-efficient while using Z3 and CVC4, respectively.

In the second set of experiments, we evaluate the performance of Z3 and
CVC4 solvers for verifying HyperTWTL properties against different unrolling
bounds, i.e., analyze the impact of ||ϕ|| on the verification performance. For this,
we vary the ||ϕ|| in the range of 51 to 125 for ϕ1–ϕ4 and record their respective
verification time and memory as shown in Tables 6 and 7. Table 6 shows that
CVC4 is faster than Z3 and the AMC approach regarding verification time. For
instance, while verifying ϕ1 for ||ϕ|| = 125, Z3 and AMC approach take 4.741
seconds and 19.507 seconds respectively. In contrast, verifying the same property
for ||ϕ|| = 125 using CVC4 takes only 3.682 seconds. This shows that CVC4
is faster than both the Z3 and AMC approaches. Similar pattern is observed
while verifying ϕ4 for ||ϕ|| = 75. Z3 and AMC approaches take 2.595 seconds
and 18.738 seconds, respectively, whereas CVC4 takes only 1.724 seconds. A
similar trend is also observed for the rest of the HyperTWTL properties. We
also observe that execution time increases linearly for verifying HyperTWTL
properties against increasing unrolling bounds, irrespective of the techniques
used for verification.

Consequently, as shown in Table 7, we observe that Z3 consumes less mem-
ory than CVC4 and the AMC for verifying the HyperTWTL properties. For
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Table 8. Requirements expressed in HyperTWTL in Case Study II

No. Description HyperTWTL Specification

5 Shortest Path ϕ5 = ∃π1∀π2. [H1 Sπ1 ∧ H1 Sπ2 ]
[0,T1] 
 [H1 E1π1 ∧

H1 E1π2 ]
[T2,T3] 
 [H1 E2π1 ∧ H1 E2π2 ]

[T4,T5] 
 [H1 E3π1 ∧
H1 E3π2 ]

[T6,T7] 
 [H1 E4π1 ∧ H1 E4π2 ]
[T8,T9] 
 [H1 E5π1 ∧

H1 E5π2 ]
[T10,T11] 
 [H1 E6π1 ∧ H1 E6π2 ]

[T12,T13] 

([H1 Lπ2 ]

[T14,T15] ∧ [H1 Lπ1 ] → [H1 Lπ2 ]
[T14,T15])

6 Symmetry ϕ6 = ∃π1∀π2 · [H1 Sπ1 ∧ H1 Sπ2 ]
[0,T1] 
 [H1 E1π1 ∧

H1 E1π2 ]
[T2,T3] 
 [H1 E2π1 ∧ H1 E3π1 ]

[T4,T7] 

[H1 E4π1 ∧ H1 E5π2 ]

[T6,T11] 
 [H1 E6π1 ∧ H1 E6π2 ]
[T12,T13]


[H1 Lπ1 ∧ H1 Lπ2 ]
[T14,T15]

7 Lineariz-
ability

ϕ7 = ∀π1∃π2 · [H1 Sπ1 = H1 Sπ2 ]
[0,T1] 
 [H1 E1π1 ∧

H1 E1π2 ]
[T2,T3] 
 [H1 E2π1 ∧ H1 E2π2 ]

[T4,T5] 
 [H1 E3π1 ∧
H1 E3π2 ]

[T6,T7] 
 [H1 E4π1 ∧ H1 E4π2 ]
[T8,T9] 
 [H1 E5π1 ∧

H1 E5π2 ]
[T10,T11] 
 [H1 E6π1 ∧ H1 E6π2 ]

[T12,T13] 
 [H1 Lπ1 =

H1 Lπ2 ]
[T14,T15]

instance, while verifying ϕ2 for ||ϕ|| = 100, CVC4 and AMC consume 22.957
MB and 25.457 MB in memory, respectively. In contrast, verifying the same
property for ||ϕ|| = 100 using Z3 takes 20.082 MB. This shows that Z3 is more
memory efficient than CVC4 and, of course, AMC. Similarly, while verifying
ϕ4 for ||ϕ|| = 51, CVC4 and the AMC consume 10.425 MB and 17.711 MB in
memory, respectively, whereas Z3 consumes only 8.611 MB. A similar trend of
memory consumption is observed for the rest of the HyperTWTL specifications.
Indeed, we also observe a linear trend in memory consumption with increasing
HyperTWTL unrolling bound irrespective of the verification method used.

4.3 Case Study II: Industrial Inspection Robots

Fig. 4. The Inspection environment

To further demonstrate
the efficiency of the pro-
posed verification algo-
rithm, we consider case
study II which resem-
bles a real-world end-
to-end robotic solution
that automates industrial
inspections [2]. In this
case study, robots are
used to monitor complex
installations of energy and
industrial processing plants
to provide up-to-date and
reliable data on plant
machinery to enhance indus-
trial operations. Plant oper-
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Table 9. Verification results of HyperTWTL properties for Case Study II

HyperTWTL Req. Description Verdict Z3 CVC4 AMC
Time (s) Memory (MB) Time (s) Memory (MB) Time (s) Memory (MB)

ϕ5 Shortest Path SAT 5.112 10.423 4.587 12.401 18.143 19.860
ϕ6 Symmetry SAT 5.985 10.258 4.937 12.537 18.353 20.315
ϕ7 Linearizability UNSAT 5.674 10.695 4.185 12.118 19.058 21.865

ators use the collected data to maximize equipment uptime, enhance operations,
and improve safety while reducing operations costs. Consider the floor of the
plant to be routinely inspected in Fig. 4 which is composed of 2 initial positions
S1 and S2, 6 equipment to be routinely inspected E1, · · · , E6, 2 landing stations
L1 and L2, and 10 allowable states A1, · · · , A10. On each inspection routine,
the robot starts from any of the initial states (green), proceeds to collect data
from installed equipment (yellow) on the plant floor, and then finally to the
landing states (blue). We abstract the inspection environment into a weighted
graph where the nodes represent the initial states, landing stations, allowable
states, and installed equipment, while the edges represent transitions between
the nodes, and the assigned weights represent travel times associated with the
transitions. Based on this case study, we consider 3 different scenarios with 3
different HyperTWTL specifications that include optimality, symmetry, and lin-
earizability.

Requirement 5 (Shortest Path): Optimality requirements are important
hyperproperties in robotic applications. One such requirement is finding the
shortest path over the human-robot collaboration environment. Let us consider a
scenario where a robot starts the inspection from any of the initial states S1 or S2,
followed by an inspection and gathering data from equipment E1, E2, E3, E4, E5,
and E6. After gathering data from all installed equipment, the robot finally pro-
ceeds to any of the landing states L1 and L2. Given a set of executions, there
exists an execution mapped to π2 that reaches a landing state from the initial
states before any other execution mapped to π1. This can be formalized as a
synchronous HyperTWTL formula ϕ5 as shown in Table 8.

Requirement 6 (Symmetry): Let us assume that two robots are available
to inspect and gather data from equipment E1, · · · E6. In this case, one robot
must inspect and gather data from equipment E1, E2, E4, and E6, while the
other robot should inspect and gather data from equipment E1, E3, E5, and E6.
We assume E2 and E4 are mapped to π1 if and only if E3 and E5 are already
mapped to π2 and vice-versa. This can be formalized as a synchronous Hyper-
TWTL formula ϕ6 as shown in Table 8.
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Table 10. Scalability Analysis for SMT-based Model Checking for HyperTWTL

TKS size Unrolling bound ||ϕ|| Z3 CVC4 AMC
Time (s) Memory (MB) Time (s) Memory (MB) Time (s) Memory (MB)

202 51 1.45 8.60 0.84 10.33 16.10 17.93
204 100 115.46 25.81 73.035 42.10 692.20 151.62
206 150 1128.04 105.83 619.07 219.76 2145.82 802.73
208 200 4500.88 296.32 2721.56 532.91 – –
2010 250 11978.13 1074.41 8859.02 1933.84 – –

Requirement 7 (Linearizability): The principle underlying linearizability is
that the whole system operates as if executions from all human-robot collabora-
tions are from one collaboration. Thus, linearizability is a correctness condition
that guarantees consistency across concurrent executions of a given system. Any
pair of traces must occupy the same states within the given mission time for
the surveillance mission. At the same time, it is also essential to ensure that the
mission’s primary goal to inspect and gather data from installed equipment is
completed before proceeding to the landing states L1 or L2 is not violated. This
can be formalized as a synchronous HyperTWTL formula ϕ7 as in Table 8.

4.4 Case Study II: Experimental Results

All experiments are performed in the same computing environment and follow
the same procedure as case study I. The following time bounds are considered
for the verification of all the HyperTWTL properties in Table 8: T1 = 1, T2 =
2, T3 = 4, T4 = 5, T5 = 8, T6 = 9, T7 = 13, T8 = 14, T9 = 19, T10 =
20 , T11 = 23 , T12 = 24 , T13 = 26 , T14 = 27, and T15 = 29. Since the time
bounds are the same for HyperTWTL formulae from ϕ5–ϕ7, their unrolling
bound is also the same, i.e., ||ϕ|| = 129. Similar to case study 1, we verify the
HyperTWTL specification using Z3 and CVC4 SMT solvers and compare them
with the automata-based model checking (AMC) approach in [9]. The obtained
results for case study II are shown in Table 9. From Table 9, we observe that ϕ5

and ϕ6 were satisfied using Z3, CVC4 and AMC whereas ϕ7 was unsatisfied.
Once again, we observe that the verification time never exceeded 5.985 seconds
in Z3, 4.937 seconds in CVC4, and 19.058 seconds in AMC. This shows a 3.55×
and 3.96× speed up for Z3 and CVC4, respectively, regarding execution time. We
also observe that while verifying the above specifications, the memory consumed
never exceeded 10.695MB in Z3, 12.537 MB in CVC4, and 21.865 MB in AMC.
Once again, this shows that our SMT-based verification approach is 2× and 1.8×
more memory-efficient while using Z3 and CVC4, respectively.

5 Scalability Analysis

In our last set of experiments, we evaluate the scalability of our proposed ver-
ification approach by varying the size of TKS T and verifying them using our
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approach vs. the AMC approach. The size of the T ranges from 202 to 2010

with randomly generated transitions. For this experiment, we consider ϕ2 as
the specification and vary the unrolling bound ||φ|| in the range of 50–250. All
experiments are performed in the same computing environment as case studies I
and II. The obtained results for the scalability analysis are presented in Table 10.
Table 10 shows that for ϕ2, the verification time increases with the increasing
size of the TKS. However, the results shown in Table 10 also suggest that our
proposed verification approach using SMT solvers, i.e., Z3 and CVC4, are more
scalable than the previously proposed AMC approach. For instance, for the TKS
with 202 states and ||φ|| = 50, it takes only 1.45 and 0.84 seconds for Z3 and
CVC4, respectively for verification. However, verifying the same ϕ2 using AMC
takes 16.10. This shows approximately 11× and 19× speedup for our approach
compared to the AMC. Similarly, for a TKS with 206 states and ||φ|| = 150,
Z3 and CVC4 takes 1128.04 seconds and 619.07 seconds, respectively to verify
ϕ2. Verifying the same requirement using the AMC approach requires 2145.82
seconds. This shows approximately 2× and 3.5× speedup for our approach com-
pared to the AMC. The comparison of memory consumption for verification also
follows the same trend. Interestingly, while verifying the TKSs with 208 and 2010

states for ||φ|| = 200 and ||φ|| = 250, the AMC approach experienced a state-
space explosion. In contrast, our proposed SMT approach successfully verified
the property using Z3 and CVC4 in 4500.88 and 2721.56 seconds, respectively.

Bounded model checking with SMT has been successfully used in developing
safety-critical industrial systems for decades [4,29]. We believe that engineers
can use our proposed HyperTWTL model checking approach to verify a wide
range of safety and security properties of large-scale, complex, and safety-critical
robotic missions.

6 Related Works

Model checking [11] has extensively been used to verify hyperproperties of mod-
els abstracted as transition systems by examining their related state transi-
tion graphs [10]. In [15], the first model checking algorithms for HyperLTL
and HyperCTL∗ employing alternating automata were proposed, which was also
adopted in [8,21] to verify HyperMTL properties. An extensive study on the
complexity of verifying hyperproperties with model checking is presented in [5].
The bounded model checking approach has recently become popular in the ver-
ification of HyperLTL specifications [16,22,23,27]. Specifically, the work in [31]
is most relevant to ours, where the authors use HyperLTL and an SMT solver
for robotic mission planning. The work in [31] was indeed the first attempt to
use hyperproperties for robotic mission planning. However, HyperLTL cannot
express tasks with explicit time constraints, which motivates our contribution
in this paper. Very recently, the authors in [9] proposed the HyperTWTL for-
malism and an automata-based model checking approach for verifying them.
In contrast to [9], this paper presents a bounded model checking approach for
verifying HyperTWTL specification using SMT solvers for enhanced verification
performance regarding verification time and memory.
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7 Conclusion

This paper introduced a bounded model checking approach for HyperTWTL
using SMT solvers, contrasting the existing automata-based HyperTWTL ver-
ification. Specifically, we reduce the HyperTWTL model checking problem to
a first-order logic satisfiability problem and then use two state-of-the-art SMT
solvers, i.e., Z3 and CVC4, for verification. Using two case studies, Technical
Surveillance Squadron (TESS) and Robotic Industrial Inspection, and a scala-
bility study, we showed that the proposed bounded model checking approach
can efficiently verify HyperTWTL properties compared to the AMC approach
while offering up to 19× speed up in terms of verification time and up to 2×
memory efficiency. Our scalability analysis results also show that our proposed
approach can verify large systems, whereas the previously reported automata-
based HyperTWTL verification method suffers from a state-space explosion.

Appendix

Asynchronous HyperTWTL to Synchronous HyperTWTL

The process to convert a given asynchronous HyperTWTL formula to a syn-
chronous HyperTWTL formula has two parts. First, we generate invariant set
of traces inv(T) for the corresponding trace set T generated over model T . This
allows for the synchronization of interleaving traces while reconciling the syn-
chronous and asynchronous semantics of HyperTWTL. Secondly, we construct
an equivalent synchronous formula ϕ̂ from an asynchronous formula ϕ such that
T |=a ϕ if and only if inv(T) |=s ϕ̂. These steps are described as follows.

Invariant Trace Generation. To construct an equivalent HyperTWTL syn-
chronous formula ϕ̂ from a given asynchronous HyperTWTL formula ϕ, we
require that HyperTWTL be stutter insensitive [26]. To achieve this, we define
the variable γρ

π needed for the evaluation of the atomic propositions across
traces. Thus, given a pair of traces π1 and π2, γρ

π ensures that all proposi-
tions in both traces exhibit the identical sequence at all timestamps. How-
ever, since timestamps proceed at different speeds in different traces such as
π1 and π2, a trajectory ρ is used to determine which trace moves and which
trace stutters at any time point. In an attempt to synchronize traces once non-
aligned timestamps are identified by a trajectory, silent events (ε) are intro-
duced between the time stamps of the trace. For all t ∈ T, we denote inv(T)
as the maximal set of traces defined over Aε where Σε = Σ ∪ ε. Consider a
trace t = (3, {b})(6, {a})(8, {b}) · · · . The trace t′ ∈ inv(T) can be generated as
inv(t) = εεεbεεaεb · · · . We now construct the synchronous HyperTWTL formula
to reason about the trace set inv(T).

Synchronous HyperTWTL Formula Construction. We now construct a syn-
chronous formula ϕ̂ that is equivalent to the asynchronous HyperTWTL ϕ.
Intuitively, the asynchronous formula of HyperTWTL ϕ depends on a finite
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interval of a timed trace. Thus, we can replace the asynchronous formula ϕ with
a synchronous formula ϕ̂ that encapsulates the interval patterns in the asyn-
chronous formula ϕ. Given a bounded asynchronous formula ϕ, we define βϕ as
the projected period required to satisfy the asynchronous formula. Inductively,
βϕ can be defined as: βHd a = d for the H operator; βϕ1∧ϕ2 = max(βϕ1 , βϕ2) for
the ∧ operator; β¬ϕ = βϕ for the ¬ operator; βϕ1
ϕ2 = βϕ1 + βϕ2 + 1 for the �
operator; β[ϕ]X,Y = up(X)+up(Y ) for the [ ] operator, where up → Z≥0 returns
the upper bound of a predefined time bound. We then construct a synchronous
formula ϕ̂ from an asynchronous formula ϕ by replacing the time required for
the satisfaction of ϕ with the appropriate ρϕ.
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Abstract. This paper proposes a tableau-based approach to model
checking linear temporal properties to mitigate the state space explosion
in model checking. The core idea of the approach is to split an original
model checking problem into multiple smaller model checking problems
using the tableau method and tackle each smaller one. We prove a the-
orem to guarantee that the multiple smaller model checking problems
are equivalent to the original model checking problem. We use Maude,
a high-level specification and programming language based on rewriting
logic, to develop a tool called DCA2MC to support our approach. Some
case studies are conducted to compare DCA2MC with Maude LTL model
checker, Spin, and LTSmin model checkers in terms of running perfor-
mance and memory usage, showing the power of our proposed approach.

Keywords: semantic tableaux · Linear Temporal Logic (LTL) · model
checking · state space explosion · Maude

1 Introduction

Model checking [8] has become one of the most notable achievements in com-
puter science over the past few decades. As a result, Edmund M. Clarke, together
with E. Allen Emerson and Joseph Sifakis, received the 2007 ACM A. M. Tur-
ing Award, the highest distinction in the field of computer science and often
regarded as the Nobel Prize of computing, for their contributions to advancing
model checking into a highly effective verification technology. Model checking has
been extensively used as an automatic formal verification technique in the hard-
ware and software industries. Despite its success, model checking still has some
challenges, particularly the state space explosion problem, the most annoying
one. Several techniques, such as abstraction [6] and partial order reduction [7],
have been devised to address this issue to some extent. Despite these efforts,
existing techniques are still insufficient, making it an ongoing area of research.

Our research group proposed a divide and conquer approach to model check-
ing some specific properties such as leads-to properties [19] expressed as ϕ1 � ϕ2,
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eventual properties [2] expressed as ♦ϕ1, conditional stable properties [18]
expressed as ϕ1 � �ϕ2, and until and until stable properties [10] expressed
as ϕ1 U ϕ2 and ϕ1 U �ϕ2, respectively, so as to deal with the state space explo-
sion in model checking, where ϕ1 and ϕ2 are restricted to atomic propositions.
Although these properties can be formalized in Linear Temporal Logic (LTL),
we need to handle each property separately by proving a theorem to ensure
the correctness of the approach for each property and developing their support
tools [3,11–13,17,20]. This is because it is challenging to find a single technique
to deal with these different properties at once during that time. To address this
challenge, we propose a tableau-based approach to model checking any linear
temporal properties with no restrictions in this paper.

The tableau method is often used for checking the satisfiability and valid-
ity [23], and the automaton construction [14] of LTL formulas. In this paper,
we adopt the tableau method to split the original reachable state space of a
system under model checking into multiple sub-state spaces and tackle each
sub-state space independently. If the size of each sub-state space is significantly
smaller than the size of the original reachable state space, it would be feasible
to conduct model checking experiment for the sub-state space even though it is
impossible to directly conduct the model checking experiment for the original
reachable state space due to the state space explosion. Thereby, our approach
can mitigate the state space explosion to some extent. Moreover, our approach
can use any existing LTL model checking algorithms and LTL model checkers
as components because we do not alter them. We prove a theorem to guarantee
that model checking problems for sub-state spaces are equivalent to the original
model checking problem for the original one. An algorithm is then constructed
based on the theorem so as to develop a support tool. We use Maude, a high-level
specification and programming language based on rewriting logic [15], to develop
a tool called DCA2MC1 to support our approach. Maude [9] has the necessary facil-
ities to develop the tool, such as LTL model checking and meta-programming,
allowing us to use Maude LTL model checker as a handy software component
in our implementation. We use two mutual exclusion protocols as case studies
and conduct experiments to compare DCA2MC with Maude LTL model checker,
Spin, and LTSmin model checkers in terms of running performance and mem-
ory usage. Our experimental results demonstrate the power of our approach in
mitigating the state space explosion in model checking. DCA2MC and case studies
are publicly available at https://github.com/canhminhdo/dca2mc.

The rest of the paper is organized as follows. Section 2 describes some pre-
liminaries for Kripke structures. Section 3 presents the semantic tableaux to con-
struct a tableau for an LTL formula. Section 4 illustrates multiple layer division of
LTL model checking with a theorem. Section 5 constructs an algorithm based on
the theorem. Section 6 presents a support tool for our approach. Section 7 shows

1 DCA2MC means a divide and conquer approach to model checking. We chose this
name because our tableau-based approach originates from the idea of the divide and
conquer approach to model checking linear temporal properties.

https://github.com/canhminhdo/dca2mc
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some experimental results. Section 8 mentions some existing work. Section 9
finally concludes the paper with some future directions.

2 Preliminaries

We use the symbol � as “be defined as.”

Definition 1 (Kripke structures). A Kripke structure K is 〈S, I,T ,A,L〉
that consists of a set S of states, a set I ⊆ S of initial states, a left-total binary
relation T ⊆ S × S over states, a set A of atomic propositions that contains
at least one special element �, and a labeling function L : S → 2A such that
� ∈ L(s) for each s ∈ S. An element (s, s′) ∈ T is called a (state) transition
from s to s′ and may be written as s →K s′.

Note that S does not need to be finite. The set R of reachable states is
inductively defined as follows: I ⊆ R and if s ∈ R and (s, s′) ∈ T , then s′ ∈ R.
We suppose that R is finite. The subscript K in s →K s′ may be omitted if it
is clear from the context. We extend the labeling function L to L̂ for each state
s to include L(s) and negations of atomic propositions that do not hold at s as
follows: L̂(s) � L(s) ∪ {¬a | a ∈ A \ L(s)}.

An infinite sequence s0, s1, . . . , si, si+1, . . . of states is called a path of
K if and only if for any natural number i, (si, si+1) ∈ T . Let π be
s0, s1, . . . , si, si+1, . . . and some notations are defined as follows. For any nat-
ural numbers i and j, π(i) � si; πi � si, si+1, . . .; πi � s0, s1, . . . , si, si, . . .;
π∞ � π; π(i,j) � si, si+1, . . . , sj , sj , . . . if i ≤ j and π(i,j) � si, si, . . . otherwise;
π(i,∞) � πi; and πi

j � π(i,j). Note that π(0,j) = πj . Note that πi(k) = π(k)
if k = 0, . . . , i and πi(k) = π(i) if k > i. Note that π(i,j)(k) = π(i + k) if
i ≤ j and k = 0, . . . , m, where j = i + m, π(i,j)(k) = π(j) if i ≤ j and k > j
and π(i,j)(k) = π(i) if i > j and k is a natural number. A path π is called a
computation of K if π(0) ∈ I.

Definition 2 (Syntax of LTL). The set LLTL of all formulas of Linear Tem-
poral Logic (LTL) is generated by the following grammar:

LLTL 
 ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | ©ϕ | ϕ U ϕ,

where a ∈ A.

Definition 3 (Semantics of LTL). For any Kripke structure K, any path π
of K, and any LTL formulas ϕ, the satisfaction relation K, π |= ϕ is inductively
defined as follows:

1. K, π |= a if and only if a ∈ L(π(0));
2. K, π |= ¬ϕ1 if and only if K, π 
|= ϕ1;
3. K, π |= ϕ1 ∨ ϕ2 if and only if K, π |= ϕ1 or K, π |= ϕ2;
4. K, π |= ©ϕ1 if and only if K, π1 |= ϕ1;
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Table 1. Classification of α/β/X-formulas

α α1 α2 β β1 β2 X X1

¬¬ϕ1 ϕ1 ¬(ϕ1 ∧ ϕ2) ¬ϕ1 ¬ϕ2 ©ϕ1 ϕ1

ϕ1 ∧ ϕ2 ϕ1 ϕ2 ϕ1 ∨ ϕ2 ϕ1 ϕ2 ¬©ϕ1 ¬ϕ1

¬(ϕ1 ∨ ϕ2) ¬ϕ1 ¬ϕ2 ϕ1 → ϕ2 ¬ϕ1 ϕ2

¬(ϕ1 → ϕ2)ϕ1 ¬ϕ2 ¬(ϕ1 ↔ ϕ2) ¬(ϕ1 → ϕ2)¬(ϕ2 → ϕ1)

ϕ1 ↔ ϕ2 ϕ1 → ϕ2 ϕ2 → ϕ1 ♦ϕ1 ϕ1 ©♦ϕ1

�ϕ1 ϕ1 ©�ϕ1 ¬�ϕ1 ¬ϕ1 ¬©�ϕ1

¬♦ϕ1 ¬ϕ1 ¬©♦ϕ1 ϕ1 U ϕ2 ϕ2 ϕ1 ∧ ©(ϕ1 U ϕ2)

¬(ϕ1 U ϕ2) ¬ϕ2 ¬ϕ1 ∨ ¬©(ϕ1 U ϕ2)

5. K, π |= ϕ1 U ϕ2 if and only if there exists a natural number i such that
K, πi |= ϕ2 and for each natural number j < i, K, πj |= ϕ1.

where ϕ1, ϕ2 are any LTL formulas. Then we write K |= ϕ if and only if K, π |=
ϕ for all computations π of K.

As usual, we use the abbreviations for formulas: ⊥ � ¬�, ϕ1 ∧ϕ2 � ¬(¬ϕ1 ∨
¬ϕ2), ϕ1 → ϕ2 � ¬ϕ1 ∨ ϕ2, ϕ1 ↔ ϕ2 � (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), ♦ϕ � � U ϕ,
�ϕ � ¬♦¬ϕ and ϕ1 � ϕ2 � �(ϕ1 → ♦ϕ2). The symbols ©, U , ♦, �, and
� are called next, until, eventually, always, and leads-to temporal connectives,
respectively.

Definition 4 (Literals). A literal is an atomic proposition or the negation of
an atomic proposition. For each a ∈ A, the pair (a,¬a) of literals is called a
complementary pair.

Definition 5 (α/β/X-formula). A formula ϕ ∈ LLTL is called

– an α-formula if ϕ is ¬¬ϕ1, ϕ1 ∧ϕ2, ¬(ϕ1 ∨ϕ2), ¬(ϕ1 → ϕ2), ϕ1 ↔ ϕ2, �ϕ1,
¬♦ϕ1, or ¬(ϕ1 U ϕ2).

– a β-formula if ϕ is ¬(ϕ1 ∧ ϕ2), ϕ1 ∨ ϕ2, ϕ1 → ϕ2, ¬(ϕ1 ↔ ϕ2), ♦ϕ1, ¬�ϕ1,
or ϕ1 U ϕ2.

– a X-formula if ϕ is ©ϕ1 or ¬©ϕ1.

3 Semantic Tableaux

This section shows the tableau rules for LTL and describes an algorithm to
construct a semantic tableau for an LTL formula based on the tableau rules.
The semantic tableau will be used for multiple layer division in LTL model
checking in Sect. 4.
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3.1 The Tableau Rules for LTL

The method of semantic tableaux is used as a decision procedure for satisfia-
bility and validity in LTL. The construction of a semantic tableau for an LTL
formula is to create a graph, where each node is labeled by a set of formulas,
which are obtained by decomposing formulas according to the logical connec-
tives and by expanding the temporal connectives in order to separate what has
to be true immediately from the current state and what has to be true from the
next state. The tableau rules are shown in Table 1. We classify them into three
groups as follows: (i) an α-formula is conjunctive (except for the case ¬¬ϕ1)
that has two subformulas α1 and α2 such that the α-formula holds if and only
if both subformulas α1 and α2 hold, (ii) a β-formula is disjunctive that has two
subformulas β1 and β2 such that the β-formula holds if and only if β1 or β2

holds, and (iii) a X-formula is a X-formula that has a subformula X1 such that
the X-formula holds if and only if X1 holds for the next state. It suffices to
define tableau rules for negation (¬), disjunction (∨), next (©), and until (U)
connectives because other connectives are defined over them. However, we show
tableau rules for other connectives in Table 1 for convenient use. The rules for
the α/β/X-formulas are adopted from [4]. For more clarity, let us describe the
α/β-formulas for �ϕ and ♦ϕ with a path π of K as follows:

– K, π |= �ϕ if and only if K, π |= ϕ and K, π1 |= �ϕ.
– K, π |= ♦ϕ if and only if K, π |= ϕ or K, π1 |= ♦ϕ.

The well-known applications of the tableau method are for checking the sat-
isfiability and validity [23] and the automaton construction [14] of LTL formulas.
However, we adopt the tableau method differently to split the original reachable
state space of a system under verification into multiple smaller sub-state spaces
and tackle each smaller sub-state space independently so as to mitigate the state
space explosion in LTL model checking in this paper.

3.2 A Tableau Construction of LTL Formulas

Given an LTL formula ϕ, the tableau method constructs a directed graph called
a semantic tableau T of ϕ. Each node l of T is labeled with a set of formulas
U(l) and has one or two child nodes depending on how a formula labeling the
node is decomposed or expanded. Initially, T consists of a single node, the initial
node, labeled with the singleton set {ϕ}, where ϕ is called the initial formula.
First, we distinguish ordinary nodes from other nodes in T as follows.

Definition 6. We give the definition of a node in T as follows:

– A closed node is a node such that its label contains only literals and there is
at least one complementary pair.

– An open node is a node such that its label contains only literals and there are
no complementary pairs.

– A state node is a node such that its label contains only literals and at least
one X-formula.
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– An ordinary node is neither a closed node, an open node, nor a state node.

Definition 7 (Leaves). The leaves of a node l in T are defined as follows:

– If l is a closed node, an open node, or a state node, l is the sole leaf of l.
– Otherwise, the leaves of l consist of all closed, open, and state nodes reachable

from l in T such that each path from l to these nodes does not contain any
closed, open, and state nodes between l and the leaves.

Algorithm 1: Construction of a semantic tableau
Input : An LTL formula ϕ
Output: A semantic tableau T of ϕ

Let S be a set of nodes in T being considered during the construction. Initially,
T consists of an initial node l0 labeled with U(l0) = {ϕ} and S = {l0}. While S
is not empty, we take out one node l labeled with U(l) from S, and do as
follows. In the sequel, when we say that we create a new node l′ as a child of l,
label l′ with U(l′), and add l′ to S, it means that we create a new node l′ and
add l′ to S if T does not contain a node labeled with U(l′). If it does, we just
connect l to the existing node.
– If l is either a closed node or an open node. We skip the rest and move to the

next iteration.
– If l is an ordinary node, we check as follows:

• Let α be an α-formula and α1, α2 be the corresponding formulas according to
Table 1. If α ∈ U(l), we create a new node l′ as a child of l, label l′ with

U(l′) = (U(l) \ {α}) ∪ {α1, α2},

and add l′ to S. Note that in the case that α is ¬¬ϕ1, there is no α2. We
then skip the rest and move to the next iteration.

• Let β be a β-formula and β1, β2 be the corresponding formulas according to
Table 1. If β ∈ U(l), we create two new nodes l′ and l′′ as children of l, label
l′ with

U(l′) = (U(l) \ {β}) ∪ {β1},

and l′′ with
U(l′′) = (U(l) \ {β}) ∪ {β2},

and l′ and l′′ are added to S. We then skip the rest and move to the next
iteration.

– If l is a state node, we do as follows. Let the set of X-formulas in U(l) be

{©ϕ1, . . . , ©ϕi, ¬©ϕi+1, . . . , ¬©ϕn}.

We create a new node l′ as a child of l, label l′ with

U(l′) = {ϕ1, . . . , ϕi, ¬ϕi+1, . . . , ¬ϕn},

and l′ is added to S.

The tableau construction terminates when S is empty.
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Algorithm 1 presents the construction of a semantic tableau T for an LTL
formula ϕ. It is apparent that the formulas labeling the nodes of T are sub-
formulas or negations of subformulas of ϕ or such formulas preceded by ©. It
is trivial to prove by structural induction that the number of possible formulas
labeling the nodes of T is less than or equal to 24×|ϕ|, where |ϕ| is the length of
ϕ. As a result, the number of nodes in T is at most equal 24×|ϕ|. Because |ϕ| is
finite and previously created nodes are used instead of creating new ones in T ,
the construction of T for any LTL formula ϕ terminates. The reader of interest
can find the proof of the termination of the tableau construction in Appendix A.

4 Multiple Layer Division of LTL Model Checking

This section describes how we conduct multiple layer division of LTL model
checking with the tableau method. First, we present a basic property of LTL
formulas from the tableau construction in Algorithm 1.

Lemma 1. The following holds.

1. Let α be an α-formula and α1, α2 be the corresponding formulas according to
Table 1. Then K, π |= α, if and only if K, π |= α1 and K, π |= α2.

2. Let β be a β-formula and β1, β2 be the corresponding formulas according to
Table 1. Then K, π |= β, if and only if K, π |= β1 or K, π |= β2.

Proof. It is immediate from the tableau construction. ��

Lemma 2. The following two conditions are equivalent:

1. K, π |= {©ϕ1, . . . ,©ϕi,¬©ϕi+1, . . . ,¬©ϕn}.
2. K, π1 |= {ϕ1, . . . , ϕi,¬ϕi+1, . . . ,¬ϕn}.

Proof. It is immediate.

In the sequel, let T be the semantic tableau of ϕ ∈ LLTL, l be a node in
T with label U(l), and l1, . . . , ln be the leaves of l with labels U(l1), . . . , U(ln),
respectively. For the sake of brevity, we write as follows:

– K, π |= U(l) means that K, π |= ϕ for each ϕ ∈ U(l).
– K, π |=

∨n
i=1 U(li) means that K, π |= U(li) for some i ∈ [1, n].

Lemma 3. K, π |= U(l) if and only if K, π |=
∨n

i=1 U(li).

Proof. This lemma follows from Lemma 1. ��

We then define some sets of formulas derived from label U(l) of l as follows:

– literals(U(l)) is defined as the set {ϕ | ϕ is a literal, ϕ ∈ U(l)}.
– next(U(l)) is defined as the set {ϕ | ©ϕ ∈ U(l)} ∪ {¬ϕ | ¬©ϕ ∈ U(l)}.
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That is, literals(U(l)) is the set of all literals in U(l), and next(U(l)) is the set of
formulas that is obtained from the X-formulas in U(l) by removing the preceding
next operator.

Lemma 4. We can check whether K, π |= U(l) as follows:

1. If literals(U(li)) 
⊆ L̂(π(0)) for all i ∈ [1, n], then K, π 
|= U(l).
2. If literals(U(li)) ⊆ L̂(π(0)) and li is an open node for some i ∈ [1, n], then

K, π |= U(l).
3. If neither 1 nor 2 above holds, then there are some i ∈ [1, n] such that

literals(U(li)) ⊆ L̂(π(0)) and li is a state node. Hence,

K, π |= U(l) ⇔ K, π1 |=
∨

Nextl

where Nextl = {next(U(li)) | li is a state node, literals(U(li)) ⊆ L̂(π(0)), and
i ∈ [1, n]}.

Proof. This lemma follows from Lemma 2 and Lemma 3. ��
Definition 8 (TryEvalOneK ,π). Let TryEvalOneK ,π(U(l)) be the set of sets of
formulas defined by

TryEvalOneK ,π(U(l)) =

⎧
⎪⎨

⎪⎩

{{⊥}} if Lemma 4, 1’s antecedent holds,

{{�}} if Lemma 4, 2’s antecedent holds,

Nextl if Lemma 4, 3’s antecedent holds.

Let us suppose that there are two artificially isolated nodes l� and l⊥ in T
with the labels U(l�) = {�} and U(l⊥) = {⊥}, respectively. Then, it is imme-
diate that TryEvalOneK ,π({�}) = {{�}} and TryEvalOneK ,π({⊥}) = {{⊥}}.

In the sequel, let l1, . . . , ln be some nodes in T with labels U(l1), . . . , U(ln),
respectively.

Lemma 5. We can check whether K, π |=
∨n

i=1 U(li) as follows:

1. If TryEvalOneK ,π(U(li)) = {{⊥}} for all i ∈ [1, n], then K, π 
|=
∨n

i=1U(li).
2. If TryEvalOneK ,π(U(li)) = {{�}} for some i ∈ [1, n], then K, π |=

∨n
i=1U(li).

3. If neither 1 nor 2 above holds,

K, π |=
n∨

i=1

U(li) ⇔ K, π1 |=
∨

Nextl1,...,ln

where Nextl1,...,ln =
⋃

i∈[1,n]
TryEvalOneK ,π(U(li)) �={{⊥}}

TryEvalOneK ,π(U(li)).

Proof. This lemma follows from Lemma 4. ��
Definition 9 (TryEvalK ,π). Let TryEvalK ,π({U(l1), . . . , U(ln)}) be the set of
sets of formulas defined by

TryEvalK ,π({U(l1), . . . , U(ln)}) =

⎧
⎪⎨

⎪⎩

{{⊥}} if Lemma 5, 1’s antecedent holds,

{{
}} if Lemma 5, 2’s antecedent holds,

Nextl1,...,ln if Lemma 5, 3’s antecedent holds.
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Note that TryEvalK ,π({{⊥}}) = {{⊥}} and TryEvalK ,π({{�}}) = {{�}}.

Lemma 6. TryEvalK ,π({U(l1), . . . , U(ln)}) = {U(l′1), . . . , U(l′m)} for some
nodes l′1, . . . , l

′
m in T .

Proof. If TryEvalK ,π({U(l1), . . . , U(ln)}) is {{⊥}} or {{�}}, it is immediate
because l⊥ and l� are in T . Otherwise, TryEvalK ,π({U(l1), . . . , U(ln)}) =
Nextl1,...,ln . We consider every TryEvalOneK ,π(U(li)) in Nextl1,...,ln for some
i ∈ [1, n] such that TryEvalOneK ,π(U(li)) 
= {{⊥}} and TryEvalOneK ,π(U(li)) 
=
{{�}} as well due to the antecedent of 3 in Lemma 5. Therefore,
TryEvalOneK ,π(U(li)) = Nextli . Let us suppose that li1, . . . , l

i
k be the leaves of

li in T . We consider every next(lij) in Nextli for some j ∈ [1, k] such that lij is
a state node and literals(U(lij)) ⊆ L̂(π(0)). Because lij is a state node, next(lij)
is the label of its sole child node by the tableau construction in Algorithm 1.
Therefore, Nextl1,...,ln is the set of labels of some nodes in T . ��

Lemma 7. The following holds.

K, π |=
n∨

i=1

U(li) ⇔ K, π1 |=
∨

TryEvalK ,π({U(l1), . . . , U(ln)}).

Proof. This lemma follows from Lemma 5. ��

For any nonzero natural number k, we consider two layer division of π, namely
two paths π(0,k) and π(k,∞). The path π(0,k) can be regarded as the first layer
of the reachable state space, while the path π(k,∞) is the second layer.

Definition 10 (2LayerskK ,π). For any nonzero natural number k,

2LayerskK ,π({U(l1), . . . , U(ln)}) = TryEvalK ,πk−1(· · · (TryEvalK ,π0 ({U(l1), . . . , U(ln)}) · · · ).

Lemma 8. For any nonzero natural number k, the following holds.

2LayerskK ,π({U(l1), . . . , U(ln)}) = {U(l′1), . . . , U(l′m)}

for some nodes l′1, . . . , l
′
m in T .

Proof. We prove by induction on k.

Base Case k = 1. It follows from Lemma 6.
Induction Step k ≥ 2. Let k = k′ + 1 for some k′ ≥ 1. We have

2Layersk
′

K ,π({U(l1), . . . , U(ln)}) = {U(lk
′

1 ), . . . , U(lk
′

mk′ )}

for some nodes lk
′

1 , . . . , lk
′

mk′ in T from the induction hypothesis. Thus, it

follows from the definition of 2Layersk
′

K ,π and 2Layersk
′+1

K ,π that

2Layersk
′+1

K ,π ({U(l1), . . . , U(ln)}) = TryEvalK ,πk′ (2Layersk
′

K ,π({U(l1), . . . , U(ln)}))

= TryEvalK ,πk′ ({U(lk
′

1 ), . . . , U(lk
′

mk′ )}).
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Owing to Lemma 6, we have

2Layersk
′+1

K ,π ({U(l1), . . . , U(ln)}) = {U(l′1), . . . , U(l′m)}

for some nodes l′1, . . . , l
′
m in T . ��

Theorem 1 (Two layer division of LTL model checking). For any
nonzero natural number k,

K, π |=
n∨

i=1

U(li) ⇔ K, πk |=
∨

2LayerskK ,π({U(l1), . . . , U(ln)}).

Proof. We prove by induction on k.

Base Case k = 1. It follows from Lemma 7.
Induction Step k ≥ 2. Let k = k′ + 1 for some k′ ≥ 1. We need to show

K, π |=
n∨

i=1

U(li) ⇔ K, πk′+1 |=
∨

2Layersk
′+1

K ,π ({U(l1), . . . , U(ln)}).

Owing to Lemma 8, we have

2Layersk
′

K ,π({U(l1), . . . , U(ln)}) = {U(l′1), . . . , U(l′m)}

for some nodes l′1, . . . , l
′
m from T . Thus, it follows from the induction hypoth-

esis that

K, π |=
n∨

i=1

U(li) ⇔ K, πk′ |=
∨

2Layersk
′

K ,π({U(l1), . . . , U(ln)})

⇔ K, πk′ |=
m∨

i=1

U(l′i).

Owing to Lemma 7, we have

K, πk′ |=
m∨

i=1

U(l′i) ⇔ K, πk′+1 |=
∨

TryEvalK ,πk′ ({U(l′1), . . . , U(l′m)}).

From the definition of 2Layersk
′

K ,π and 2Layersk
′+1

K ,π , we have

2Layersk
′+1

K ,π ({U(l1), . . . , U(ln)}) = TryEvalK ,πk′ (2Layersk
′

K ,π({U(l1), . . . , U(ln)}))
= TryEvalK ,πk′ ({U(l′1), . . . , U(l′m)}).

Therefore,

K, π |=
n∨

i=1

U(li) ⇔ K, πk′+1 |=
∨

2Layersk
′+1

K ,π ({U(l1), . . . , U(ln)})

��
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Corollary 1. Let ϕ be any LTL formula of K and T be the tableau of ϕ. For
any nonzero natural number k,

K, π |= ϕ ⇔ K, πk |=
∨

2LayerskK ,π({{ϕ}}).

Proof. This is an instance of Theorem 1 by replacing
∨n

i=1 U(li) with
∨

{{ϕ}},
where {ϕ} is the label of the initial node from T . ��

Fig. 1. L + 1 layer division of the reachable state space

In the sequel, let L be any nonzero natural number and d : [0, L + 1] → N∞
be a function such that d(0) = 0, d(L + 1) = ∞, and d(l) is a nonzero natural
number for l ∈ [1, L], where N∞ denotes the set of natural numbers and ∞.
In addition, let dx be

∑x
i=0 d(i) for i ∈ [0, L + 1]. We consider L + 1 division

of π, namely paths π(d0,d1), . . . , π(dl,dl+1), . . . , π(dL,dL+1) (see Fig. 1). The path
π(d(l),d(l+1)) can be regarded as the (l + 1)-th layer of the reachable state space
for l ∈ [0, L]. d is used to give the depth of each layer, while dl is the depth from
the top of the first layer to the bottom of the l-th layer for l ∈ [0, L + 1].

Definition 11 (CheckL
K ,π). For any nonzero natural number L,

CheckL
K ,π({U(l1), . . . , U(ln)}) = TryEval

K ,πdL−1 (· · · (TryEvalK ,π0 ({U(l1), . . . , U(ln)}) · · · ).

Lemma 9. For any nonzero natural number L, the following holds.

CheckL
K ,π({U(l1), . . . , U(ln)}) = {U(l′1), . . . , U(l′m)}

for some nodes l′1, . . . , l
′
m in T .

Proof. It is similar to prove this lemma by induction on dL as shown in Lemma 8.
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Theorem 2 (L+1 layer division of LTL model checking). For any nonzero
natural number L,

K, π |=
n∨

i=1

U(li) ⇔ K, πdL |=
∨

CheckL
K ,π({U(l1), . . . , U(ln)})

Proof. We prove by induction on L.

Base Case L = 1. It follows from Theorem 1.
Induction Step L ≥ 2. Let L = L′ + 1 for some L′ ≥ 1. We need to show

K, π |=
n∨

i=1

U(li) ⇔ K, πdL′+1 |=
∨

CheckL′+1
K ,π ({U(l1), . . . , U(ln)}).

Let d′′ be d used in CheckL′+1
K ,π ({U(l1), . . . , U(ln)}) such that d′′(0) = 0,

d′′(L′ + 2) = ∞, and d′′(x) is an arbitrary nonzero natural number for
x ∈ [1, L′ + 1]. The induction hypothesis is as follows:

K, π |=
n∨

i=1

U(li) ⇔ K, πdL′ |=
∨

CheckL′
K ,π({U(l1), . . . , U(ln)}).

Let d′ be d used in CheckL′
K ,π({U(l1), . . . , U(ln)}) such that d′(0) = 0, d′(L′ +

1) = ∞, and d′(x) is an arbitrary nonzero natural number for x ∈ [1, L′].
Because d′′(x) is an arbitrary nonzero natural number for x ∈ [1, L′ + 1], we
suppose that d′′(x) = d′(x) for x ∈ [1, L′].
Owing to Lemma 9, we have

CheckL′
K ,π({U(l1), . . . , U(ln)}) = {U(l′1), . . . , U(l′m)}

for some nodes l′1, . . . , l
′
m from T . Thus, it follows from the induction hypoth-

esis that

K, π |=
n∨

i=1

U(li) ⇔ K, πdL′ |=
m∨

i=1

U(l′i).

From the definition of CheckL′
K ,π and CheckL′+1

K ,π , we have

CheckL′+1
K ,π ({U(l1), . . . , U(ln)})

= TryEval
K ,π

d
L′+1−1(· · · (TryEvalK ,πd

L′ (CheckL′
K ,π({U(l1), . . . , U(ln)}))) · · · )

= TryEval
K ,π

d
L′+1−1(· · · (TryEvalK ,πd

L′ ({U(l′1), . . . , U(l′m)})) · · · ).

Note that dL′+1 = dL′ + d′′(L′ + 1). Let k be an arbitrary nonzero natural
number. Hence, we suppose that k = d′′(L′ + 1). From the definition of
2LayerskK ,π and the result of CheckL′+1

K ,π ({U(l1), . . . , U(ln)}) above, we have

CheckL′+1
K ,π ({U(l1), . . . , U(ln)}) = 2Layersk

K ,πd
L′ ({U(l′1), . . . , U(l′m)}).
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Owing to Theorem 1, we have

K, πdL′ |=
m∨

i=1

U(l′i) ⇔ K, πdL′+k |=
∨

2Layersk
K ,πd

L′ ({U(l′1), . . . , U(l′m)}).

Therefore,

K, π |=
n∨

i=1

U(li) ⇔ K, πdL′+1 |=
∨

CheckL′+1
K ,π ({U(l1), . . . , U(ln)}).

��

Algorithm 2: The algorithm for the tableau-based approach to model
checking linear temporal properties
input : K – a Kripke structure

ϕ – an LTL formula
T – a semantic tableau of ϕ constructed from Algorithm 1
L – a nonzero natural number
d – a function such that d(x) is a nonzero natural number for x ∈ [1, L]

output: Success (K |= ϕ) or Failure (K �|= ϕ)

1 S&F ← {(s, {{ϕ}}) | s ∈ I}
2 forall the l ∈ [1, L] do
3 S&F ′ ← ∅
4 forall the (s, F ) ∈ S&F do

5 forall the π ∈ P
d(l)

(K ,s) do

6 F ′ ← F
7 forall the i ∈ [0, d(l)) do
8 if TryEvalK ,πi(F ′) = {{⊥}} then
9 return Failure

10 if TryEvalK ,πi(F ′) = {{
}} then
11 go to 5
12 F ′ ← TryEvalK ,πi(F ′)
13 S&F ′ ← S&F ′ ∪ (π(d(l)), F ′)
14 S&F ← S&F ′

15 forall the (s, F ) ∈ S&F do
16 forall the π ∈ P (K ,s) do
17 if K , π �|=

∨
F then

18 return Failure

19 return Success

Corollary 2. Let ϕ be any LTL formula of K and T be the tableau of ϕ. For
any nonzero natural number L,

K, π |= ϕ ⇔ K, πdL |=
∨

CheckL
K ,π({{ϕ}}).

Proof. This is an instance of Theorem 2 by replacing
∨n

i=1 U(li) with
∨

{{ϕ}},
where {ϕ} is the label of the initial node from T . ��
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5 A Tableau-Based Approach to LTL Model Checking
Algorithm

We construct Algorithm 2 based on Theorem 2 to check whether K |= ϕ. Let
S&F be the set of pairs, each of which consists of a state s and a set F of sets of
formulas. This means that each path that starts from the state s needs to satisfy
at least one set of formulas from the set F . Recall that each set of formulas labels
a node in the tableau T of ϕ. Initially, S&F is initialized with each state in I and
the singleton set {{ϕ}}. In the code fragment at lines 2–14, for each intermediate
layer l ∈ [1, L], S&F is given as input for all states located at the beginning
of layer l and their formulas being considered, and S&F ′ is used to collect all
states located at the bottom of layer l and their formulas. For each pair (s, F ) in
S&F , we check for each path π that starts from s up to depth d(l) as follows. F ′

initially is assigned to F at the beginning of the iteration. We iteratively check
whether K, π |=

∨
F ′ can be judged at π(i) for i ∈ [0, d(l)) with the TryEvalK ,πi

function. If the function returns {{⊥}}, it is a true counterexample and Failure
is returned immediately. If the function returns {{�}}, then K, π |=

∨
F ′ and

so we move to check another path. Otherwise, F ′ is assigned to the set of sets
of formulas that should be considered for πi+1 at line 12. At the end of the
iteration, if K, π |=

∨
F ′ cannot be judged at any π(i) for i ∈ [0, d(l)), we add

the pair (π(d(l)), F ′) to S&F ′ to be considered for the next layer. If no Failure
is returned during checking for layer l, S&F ′ will be assigned to S&F as the
input for the next layer at line 14. The code fragment at lines 15–18 checks
for each pair (s, F ) in S&F and for each path π that starts from s with F at
the final layer, saying (L + 1)-th layer. If K, π 
|=

∨
F , Failure is returned.

Otherwise, Success is returned at the end.

6 Implementation

We implemented the tableau-based approach to model checking linear tempo-
ral properties based on Algorithm 2 in Maude as DCA2MC, which is publicly
available at https://github.com/canhminhdo/dca2mc. Maude [9] is a high-level
specification and programming language based on rewriting logic [15]. It has the
necessary facilities to develop DCA2MC, such as LTL model checking and meta-
programming, allowing us to use Maude LTL model checker as a handy software
component in our implementation. Therefore, we use Maude as a formal speci-
fication, its model checker, and meta-programming for our tool development.

DCA2MC provides an interactive mode for users to conduct model checking
experiments with our approach using the following commands, where underscores
denote arguments in the commands.

– initialize[_,_,_] to initialize the application with a system module iden-
tifier, an initial state, and an LTL formula under model checking given as
inputs. A tableau for the LTL formula is constructed at this initialization.

https://github.com/canhminhdo/dca2mc
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Table 2. Experimental results for the leads-to property inWs1 � inCs1

Protocol LayersDCA2MCMaude LTL model checker Spin LTSmin

Qlock 2 2 5 h 4m 24 d 20 h 11m OOM OOM

(10 processes) (after 10 h 9m) (after 5 h 9m)

Anderson 2 2 59m 7 s 11 d 19 h 17m OOM OOM

(9 processes) (after 3 h 54m) (after 6 h 45m)

– layerCheck _ to generate states located at the beginning of the final layer
together with their formulas for a given layer configuration, which is a list of
nonzero natural numbers to denote the depth of each intermediate layer. This
generation is performed using the tableau method as shown in Algorithm 2
for intermediate layers.

– lastCheck to conduct model checking experiments for each state and its
formulas at the final layer as shown in Algorithm 2 for the final layer. It is
important to note that the model checking experiments at the final layer are
carried out by Maude LTL model checker in our implementation.

– quit to terminate the application.

DCA2MC returns either success or failure to indicate whether the system under
model checking satisfies the LTL formula starting from an initial state.

7 Experiments

7.1 Experiment Setup

We used a MacPro computer that carries a 2.5 GHz microprocessor with 28 cores
and 768 GB memory of RAM to conduct experiments. We use two mutual exclu-
sion protocols as systems under model checking: Qlock with 10 process partici-
pants and Anderson with 9 process participants. Qlock is an abstract version of
the Dijkstra binary semaphore, while Anderson is an array-based mutual exclu-
sion protocol invented by Anderson [1]. We suppose that each process enters
the critical section once and then moves to the final section and stays there
forever to avoid long lasso loops in our specifications. Let inWs1, inCs1, and
inFs1 be atomic propositions that hold at a state if and only if a certain pro-
cess resides in the waiting, critical, and final sections, respectively. We consider
two commonly used liveness properties for our case studies: a leads-to property
expressed as inWs1 � inCs1 and an eventual property expressed as ♦ inFs1
. The former property states that whenever a process resides in the waiting
section, it will eventually enter the critical section, while the latter property
states that a process eventually resides in the final section. We then conduct
experiments for Qlock and Anderson with the leads-to and eventual properties
to compare DCA2MC with Maude LTL model checker (version 3.2), Spin (version
6.5.1), and LTSmin (version 3.0.2) in terms of running performance and memory
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usage. Note that we prepare the Maude specifications of Qlock and Anderson for
Maude LTL model checker and DCA2MC that are available at https://github.com/
canhminhdo/dca2mc. Meanwhile, we prepare the corresponding Promela specifi-
cations of Qlock and Anderson for Spin and these Promela specifications can also
be fed into LTSmin using a so-called translator SpinS [21]. The Promela specifica-
tions are publicly available at https://github.com/canhminhdo/promela-specs.

Table 3. Experimental results for the eventual property ♦ inFs1

Protocol LayersDCA2MCMaude LTL model checker Spin LTSmin

Qlock 2 2 2 h 51m 14 d 4 h 41m OOM OOM

(10 processes) (after 9 h 18m) (after 5 h 12m)

Anderson 2 2 21m 27 s 1 d 10 h 37m 50 s 6m 18 s

(9 processes)

7.2 Experimental Results

The experimental results for model checking Qlock and Anderson with the leads-
to property inWs1 � inCs1 and the eventual property ♦ inFs1 are shown in
Table 2 and Table 3, respectively. The second column shows the layer configura-
tion used only for DCA2MC. Other model checkers do not use this information. The
OOM (Out of Memory) value in the fifth and sixth columns denotes that 768
GB of memory was insufficient for Spin and LTSmin to conduct model checking
experiments due to the state space explosion.

DCA2MC vs. Maude LTL Model Checker . For Qlock with 10 processes
and Anderson with 9 processes, DCA2MC could complete the model checking
experiments significantly faster than Maude LTL model checker for the two prop-
erties. It is important to note that DCA2MC is implemented in Maude and uses
Maude LTL model checker as a software component to conduct model check-
ing experiments at the final layer. Moreover, some extra costs are introduced
to DCA2MC due to its performance at the meta-level, while Maude LTL model
checker is performed at the object level. Therefore, these results demonstrate
the power of our approach and show that dealing with many smaller sub-state
spaces can be more efficient than dealing with the original state space because
it does not need to manage a huge amount of memory, the size of a hash table
is also smaller and so state matching and storing are less burdensome, and it is
also good for hardware cache.

DCA2MC vs. Spin and LTSmin . For Qlock with 10 processes, Spin and
LTSmin model checkers ran out of memory after several hours for the two prop-
erties. For Anderson with 9 processes, Spin and LTSmin ran out of memory for

https://github.com/canhminhdo/dca2mc
https://github.com/canhminhdo/dca2mc
https://github.com/canhminhdo/promela-specs
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the leads-to property but not for the eventual property. Meanwhile, both Maude
LTL model checker and DCA2MC could deal with them. Especially, DCA2MC could
deal with them effectively. These results demonstrate the power of our approach
in mitigating the state space explosion and improving the running performance
of model checking when dealing with large state spaces. Spin and LTSmin could
handle Anderson with 9 processes for the eventual property but struggled for
the leads-to property. This is because the eventual property is simpler than the
leads-to property, making the size of the product automaton of the system under
verification and the negation of the eventual property significantly smaller, as
the time complexity of LTL model checking is O(|S| × 2O(|ϕ|)) [22], where |S| is
the size of the system, and |ϕ| is the length of ϕ, the desired property.

For Anderson with the eventual property, Spin and LTSmin could com-
plete the model checking experiments surprisingly fast, while Maude LTL model
checker and DCA2MC need to spend much more time to complete their verification.
That is because Spin and LTSmin use a state vector of variables to store states
efficiently in memory and are equipped with many optimization techniques to
reduce the state space, especially the partial order reduction [7], while Maude
does not have and neither does DCA2MC. The key strength of DCA2MC lies in its
ability to split the original reachable state space into smaller sub-state spaces
and tackle each sub-state space independently. This makes our approach possible
to handle larger state spaces than other model checkers. These findings suggest
that we should implement our approach into existing efficient model checkers,
such as Spin and LTSmin, and use them as an efficient software component in
our implementation. This would allow us to leverage the advantage of our app-
roach and the optimization techniques used in efficient model checkers, making
it possible to handle larger state spaces effectively. This would be one piece of
our future work.

8 Related Work

SAT/SMT-based bounded model checking (SAT/SMT-BMC) [5] is a highly
effective method for addressing the state space explosion issue in model check-
ing. This technique can identify a counterexample near an initial state, but it
cannot prove that a system enjoys desired properties. To overcome this lim-
itation, k-induction [16], an extension of SAT/SMT-BMC, was devised. This
method uses mathematical induction in conjunction with SAT/SMT-BMC to
verify that a system enjoys its desired properties. An SAT/SMT solver checks
the desired properties up to a certain bounded depth from an arbitrary initial
state, which is considered the base case in the mathematical induction. For each
state sequence up to the bounded depth, all successor states from the last state of
the sequence are verified with the desired properties using an SAT/SMT solver,
constituting the induction step. Our approach shares the fundamental concept
with SAT/SMT-BMC as we perform bounded model checking experiments for
sub-state spaces at each intermediate layer. Additionally, our approach can also
be seen as an extension of BMC because we conduct unbounded model checking
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for sub-state spaces in the final layer to verify the desired properties, without
using SAT/SMT solvers. The limitation of our approach is that it cannot handle
long lasso loops in specifications because these make the sub-state spaces in the
final layer more likely to be the same size as the original reachable state space.
Dealing with this limitation would be one piece of our future work.

9 Conclusion

We have described the tableau-based approach to model checking linear temporal
properties by showing how to construct a tableau for an LTL formula, how to
split an original model checking problem into smaller model checking problems
using the tableau method, and how to tackle each smaller one independently.
We have proved a theorem to guarantee the correctness of our approach, based
on which an algorithm has been constructed to develop the support tool. We
have used Maude to develop the support tool called DCA2MC and have conducted
some experiments to compare DCA2MC with Maude LTL model checker, Spin,
and LTSmin model checkers in terms of the running performance and memory
usage. The experimental results have demonstrated the power of our approach
in mitigating the state space explosion and improving the running performance
of model checking. In addition to some future work mentioned earlier, we plan to
conduct more case studies and develop a parallel version of DCA2MC to improve
the running performance of model checking further because the model checking
experiment for each sub-state space in the final layer is completely independent.

A The Termination of the Tableau Construction

To show the termination property of the tableau construction, we first define
the length of formulas and the set of subformulas of formulas.

Definition 12. The length |ϕ| of ϕ ∈ LLTL is defined inductively as follows:

1. |a| = 1 for each a ∈ A;
2. |¬ϕ| = |ϕ| + 1;
3. |ϕ1 ∨ ϕ2| = |ϕ1| + |ϕ2| + 1;
4. |©ϕ| = |ϕ| + 1;
5. |ϕ1 U ϕ2| = |ϕ1| + |ϕ2| + 1.

Definition 13. The set Sub(ϕ) of subformulas of ϕ ∈ LLTL is defined inductively
as follows:

1. Sub(a) = {a} for each a ∈ A;
2. Sub(¬ϕ) = {¬ϕ} ∪ Sub(ϕ);
3. Sub(ϕ1 ∨ ϕ2) = {ϕ1 ∨ ϕ2} ∪ Sub(ϕ1) ∪ Sub(ϕ2);
4. Sub(©ϕ) = {©ϕ} ∪ Sub(ϕ);
5. Sub(ϕ1 U ϕ2) = {ϕ1 U ϕ2} ∪ Sub(ϕ1) ∪ Sub(ϕ2).
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We define some sets of formulas as follows:

– Sub¬(ϕ) � {¬ψ | ψ ∈ Sub(ϕ)} is the negations of Sub(ϕ),
– Sub©(ϕ) � {©ψ | ψ ∈ Sub(ϕ)∪Sub¬(ϕ)} is the formulas of Sub(ϕ)∪Sub¬(ϕ)

preceded by ©,
– F(ϕ) � Sub(ϕ) ∪ Sub¬(ϕ) ∪ Sub©(ϕ).

We then prove the relation between the size of F(ϕ) and the length of ϕ.

Lemma 10. |F(ϕ)| ≤ 4 × |ϕ|.

Proof. We prove it by structural induction on ϕ as follows:

Base Case ϕ = a ∈ A. Because

F(a) = {a,¬a,©a,©¬a} and |a| = 1,

we have |F(a)| = 4 ≤ 4 × |a|.
Induction Step

Case I1 ϕ = ¬ϕ1. We observe that

Sub¬(¬ϕ1) = {¬ψ | ψ ∈ Sub(¬ϕ1)}
= {¬ψ | ψ ∈ Sub(ϕ1)} ∪ {¬¬ϕ1}
= Sub¬(ϕ1) ∪ {¬¬ϕ1},

Sub©(¬ϕ1) = {©ψ | ψ ∈ Sub(¬ϕ1) ∪ Sub¬(¬ϕ1)}
= {©ψ | ψ ∈ Sub(ϕ1) ∪ Sub¬(ϕ1)} ∪ {©¬ϕ1} ∪ {©¬¬ϕ1}
= Sub©(ϕ1) ∪ {©¬ϕ1} ∪ {©¬¬ϕ1}.

Thus,

F(¬ϕ1) = Sub(¬ϕ1) ∪ Sub¬(¬ϕ1) ∪ Sub©(¬ϕ1)
= {¬ϕ1} ∪ Sub(ϕ1) ∪ Sub¬(ϕ1)
∪ {¬¬ϕ1} ∪ Sub©(ϕ1) ∪ {©¬ϕ1} ∪ {©¬¬ϕ1}
= F(ϕ1) ∪ {¬ϕ1,¬¬ϕ1,©¬ϕ1,©¬¬ϕ1}.

By the induction hypothesis, |F(ϕ1)| ≤ 4 × |ϕ1|. Hence,

|F(¬ϕ1)| = |F(ϕ1)| + 4 ≤ 4 × |ϕ1| + 4 = 4 × (|ϕ1| + 1) = 4 × |¬ϕ1|.



372 C. Minh Do et al.

Case I2 ϕ = ϕ1 ∨ ϕ2. We observe that

Sub¬(ϕ1 ∨ ϕ2) = {¬ψ | ψ ∈ Sub(ϕ1 ∨ ϕ2)}
= {¬ψ | ψ ∈ Sub(ϕ1) ∪ Sub(ϕ2)} ∪ {¬(ϕ1 ∨ ϕ2)}
= {¬ψ | ψ ∈ Sub(ϕ1)} ∪ {¬ψ | ψ ∈ Sub(ϕ2)} ∪ {¬(ϕ1 ∨ ϕ2)}
= Sub¬(ϕ1) ∪ Sub¬(ϕ2) ∪ {¬(ϕ1 ∨ ϕ2)},

Sub©(ϕ1 ∨ ϕ2) = {©ψ | ψ ∈ Sub(ϕ1 ∨ ϕ2) ∪ Sub¬(ϕ1 ∨ ϕ2)}
= {©ψ | ψ ∈ Sub(ϕ1) ∪ Sub(ϕ2) ∪ Sub¬(ϕ1) ∪ Sub¬(ϕ2)}
∪ {©(ϕ1 ∨ ϕ2)} ∪ {©¬(ϕ1 ∨ ϕ2)}
= {©ψ | ψ ∈ Sub(ϕ1) ∪ Sub¬(ϕ1)}
∪ {©ψ | ψ ∈ Sub(ϕ2) ∪ Sub¬(ϕ2)}
∪ {©(ϕ1 ∨ ϕ2)} ∪ {©¬(ϕ1 ∨ ϕ2)}
= Sub©(ϕ1) ∪ Sub©(ϕ2) ∪ {©(ϕ1 ∨ ϕ2)} ∪ {©¬(ϕ1 ∨ ϕ2)}.

Thus,

F(ϕ1 ∨ ϕ2) = Sub(ϕ1 ∨ ϕ2) ∪ Sub¬(ϕ1 ∨ ϕ2) ∪ Sub©(ϕ1 ∨ ϕ2)

= {ϕ1 ∨ ϕ2} ∪ Sub(ϕ1) ∪ Sub(ϕ2)

∪ Sub¬(ϕ1) ∪ Sub¬(ϕ2) ∪ {¬(ϕ1 ∨ ϕ2)}
∪ Sub©(ϕ1) ∪ Sub©(ϕ2) ∪ {©(ϕ1 ∨ ϕ2)} ∪ {©¬(ϕ1 ∨ ϕ2)}
= F(ϕ1) ∪ F(ϕ2) ∪ {ϕ1 ∨ ϕ2, ¬(ϕ1 ∨ ϕ2), ©(ϕ1 ∨ ϕ2), ©¬(ϕ1 ∨ ϕ2)}.

By the induction hypothesis, |F(ϕ1)| ≤ 4 × |ϕ1| and |F(ϕ2)| ≤ 4 × |ϕ2|.
Hence,

|F(ϕ1∨ϕ2)| = |F(ϕ1)|+ |F(ϕ2)|+4 ≤ 4×(|ϕ1|+ |ϕ2|+1) = 4×|ϕ1∨ϕ2|.

Case I3 ϕ = ©ϕ1. The proof is similar to Case I1.
Case I4 ϕ = ϕ1 U ϕ2. The proof is similar to Case I2. ��

Let T be the tableau of ϕ constructed based on Algorithm 1 with the tableau
rules. It is apparent that the formulas labeling the nodes of T are subformulas
or negations of subformulas of ϕ or such formulas preceded by ©, that is F(ϕ).
Therefore, the number of nodes of T is at most equal to the number of subsets
of F(ϕ), that is 2|F(ϕ)| ≤ 24×|ϕ| regarding Lemma 10. Because |ϕ| is finite
and previously created nodes are used instead of creating new ones in T , the
construction of T for any LTL formula ϕ terminates.
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Abstract. There exist different semantics for Linear Temporal Logic
(LTL) in terms of finiteness of the considered traces. Although several
ones can be useful depending on the verification context, no verification
framework handle their diversity in a simple way. Another limitation
of current LTL verification tools is the treatment of concrete domains
(bounded and infinite integers, real numbers, etc.). We present an app-
roach to LTL model checking on both finite and infinite traces with con-
crete domains. Our method is based on an SMT solver and on Bounded
Model Checking (BMC). We also present some experiments and compare
our tool with NuSMV and nuXmv.

Keywords: Bounded Model Checking · LTL · Finite traces · conrete
domains

1 Introduction

Temporal logic model checking has proven useful for verifying behavioral proper-
ties in software and hardware systems. Over the last decades, many works have
proposed new algorithms, especially using SAT encoding. These advances in SAT
and SMT solvers have led to model checkers capable of handling industrial-size
systems.

A first limitation is that most techniques assume that temporal formulas are
built from atomic propositions. However, in many case studies, using concrete
domains such as integers, floats, and real numbers would be very helpful.

A second limitation is the restricted temporal semantics. For Linear Tem-
poral Logic (LTL), the usual semantics only considers infinite traces. However,
it is useful to reason about finite and truncated executions. Even in reactive
systems, some executions may end due to crashes or expected behavior termi-
nation, and truncated executions can help simulate the system or find simple
counter-examples. Although finite semantics are defined in the literature [1,2],
there is no unified framework that allows users to easily combine these different
types of reasoning.

We claim that, given the current state of the art in SMT solvers and Bounded
Model Checking (BMC) algorithms, it is possible to handle these two limitations
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to a reasonable extent. We also found that a simple criterion for deciding whether
a completeness threshold (in terms of trace length) has been reached during
BMC can be computed by SMT solvers in reasonable time, providing a complete
model checking algorithm. The main contribution of this article is to propose a
framework for performing LTL model checking that is:

– usable over concrete domains,
– considering three possible trace semantics (infinite, truncated, and maximal

finite),
– with a completeness option (on the length of traces) that also guarantees

termination under the assumption of finite domains.

We implemented a prototype and evaluated its tractability with different
simple, scalable examples. By comparing our prototype with the NuSMV and
nuXmv implementations of the BMC and IC3 algorithms, we observed good
performance, especially for models using integer numbers.

In Sect. 2, we discuss the different possible trace semantics. Section 3 presents
the main principles of our solver. Section 4 shows some experiments and compare
our tool with NuSMV and nuXmv.

2 Trace Semantics

In this section, we develop on different semantics for LTL, which can all be of
interest depending on the verification purpose. Each one relies on a specific kind
of traces: infinite traces, truncated traces and maximal finite traces.

Remark 1. In this section, we address temporal semantics and do not deal with
concrete domains. This is why we consider an abstract set of states and atomic
propositions, which are associated with states by the valuation V . In the next
sections, in which we will consider concrete domains, a state will be implicitly
defined by a mapping from variables to values (in the concrete domain).

2.1 Traces

The verification problem that we address assumes that the system under study
is modeled as a transition system. Thus, the traces that are considered in our
approach come from this transition system.

Definition 1 (Transition system, traces). Given a set P of atomic propo-
sitions, a transition system (TS) over P is defined as a tuple (S, I, T, V ) where

– S is a (possibly infinite) set of states,
– I ⊆ S is the set of initial states,
– T ⊆ S × S is the transition relation,
– V : S → 2P is a valuation function associating each state with the set of

atomic propositions that are true in this state.
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Given such a TS,

– an infinite trace is defined as an infinite sequence of states s0, s1, . . . such that
s0 ∈ I and ∀i ∈ N (si, si+1) ∈ T ,

– a truncated trace is a finite sequence of states s0, s1, . . . , sn such that s0 ∈ I
and ∀i ∈ 0..n − 1 (si, si+1) ∈ T ,

– a maximal finite trace is a truncated trace s0, s1, . . . , sn such that
∀s ∈ S (sn, s) /∈ T .

2.2 LTL Syntax and Semantics

Definition 2 (LTL syntax). Given a set P of atomic propositions, LTL for-
mulas are defined inductively by the following grammar:

ϕ ::= � | p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

where � denotes the constant true and p ∈ P is an atomic proposition.

X and U stand for the “next” and “until” connectives. All the usual Boolean
connectives can be defined in terms of the negation (¬) and the conjunction (∧)
in the natural way. The standard temporal connectives F (eventually) and G
(always) can be defined in terms of U as Fϕ = �Uϕ and Gϕ = ¬F¬ϕ.

The standard semantics of LTL, which is presented for instance in [3,4],
only considers infinite traces. This is also the semantics that is considered in
most of the verification tools handling temporal logic such as the BDD-based
algorithm in NuSMV and nuXmv [5,6], Alloy Analyzer [7,8], and TLA/TLC [9].

Definition 3 (LTL semantics on infinite traces). Given an infinite trace
σ = s0, s1, . . . and a valuation function V : S → 2P , the satisfaction relation
|=inf is defined by induction on formulas, for any i ∈ N:

– σ, i |=inf �
– σ, i |=inf p if p ∈ V (si)
– σ, i |=inf ¬ϕ if σ, i �|=inf ϕ
– σ, i |=inf ϕ1 ∧ ϕ2 if σ, i |=inf ϕ1 and σ, i |=inf ϕ2

– σ, i |=inf Xϕ if σ, i + 1 |=inf ϕ
– σ, i |=inf ϕ1Uϕ2 if ∃j � i such that σ, j |=inf ϕ2 and

∀i � k < j σ, k |=inf ϕ1

In some contexts, such as simulation, reasoning about a finite execution traces
can be useful. Some works have already studied LTL semantics in such a case [1,
2]. An important issue is the way we deal with the last state. The most commonly
adopted semantics in this case is the following.

Definition 4 (LTL semantics on finite traces). Given a finite trace σ =
s0, s1, . . . , sn and a valuation function V : S → 2P , the satisfaction relation
|=fin is defined by induction on formulas, for any i ∈ 0..n (the semantics of
Boolean connectives and constants is the same as for the infinite case):
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– σ, i |=fin Xϕ if i < n and σ, i + 1 |=fin ϕ
– σ, i |=fin ϕ1Uϕ2 if ∃j such that i � j � n and σ, j |=fin ϕ2 and

∀i � k < j σ, k |=fin ϕ1

Now that we provided a meaning to the satisfaction of an LTL formula by a
trace, we can define the satisfaction of a formula by a transition system. In fact,
we propose to distinguish between three possible satisfaction relations.

Definition 5 (LTL satisfaction by a transition system). Given a transi-
tion system M and an LTL formula ϕ, we consider the following three satisfac-
tion relations:

– M satisfies ϕ on infinite traces (written M |=inf ϕ) if for every infinite trace
σ of M, σ, 0 |=inf ϕ.

– M satisfies ϕ on truncated traces (written M |=trun ϕ) if for every truncated
trace σ of M, σ, 0 |=fin ϕ.

– M satisfies ϕ on maximal traces (written M |=max ϕ) if for every infinite
trace σ of M, σ, 0 |=inf ϕ and for every maximal finite trace σ, σ, 0 |=fin ϕ.

2.3 Illustration

In order to illustrate the different semantics for LTL, we consider the simple
transition system shown in Fig. 1, including three states, three transitions and
two atomic propositions x and y. Let us call M this transition system.

Fig. 1. Simple transition system

Infinite Trace Semantics. If we only consider infinite traces, in this example,
only the first loop stands, and the model can be illustrated as shown in Fig. 2a.
As a consequence, the formula Gx will be true on all traces under an infinite
semantics, i.e., M |=inf Gx.

Truncated Trace Semantics. The truncated semantics considers any path in the
graph to be an acceptable trace. In particular, the trace shown in the Fig. 2b,
which ends in the state satisfying x ∧ y, is an acceptable truncated trace. Let us
call σ this trace. We have that σ, 0 |=fin FG(x ∧ y). Therefore, the negation of
this formula is not satisfied by the transition system according to the truncated
semantics: M �|=trun ¬FG(x ∧ y).
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Maximal Finite Semantics. Now, if we consider traces that are maximal finite,
the trace that ends in the state satisfying ¬x∧y is taken into account (as shown
by Fig. 2c) but not the truncated trace ending in the middle state, which satisfies
x ∧ y. So, considering maximal trace semantics, we have M |=max ¬FG(x ∧ y)
and also M �|=max Gx.

Finite Executions as Infinite Traces. If one uses an infinite trace framework,
some techniques can be used to encode finite traces. For instance, adding stutter-
ing, i.e., a looping transition, in every state, allows to represent every truncated
trace (by considering the truncated trace plus a loop in the last state). Figure 2d
shows the corresponding transition system for our example. We can see that this
adds traces that could be unexpected (depending on the system under study).
Besides, it is not possible to distinguish between a trace that is truncated and
a trace that models an infinite execution looping in its last state.

Another approach allows the user to reason about maximal finite traces
within an infinite trace semantics. It consists in marking all the states that have
no successor with a special atomic proposition (e.g., dead), and adding a loop
to theses states. As shown in Fig. 2e. It is then possible to identify deadlocks
but all states have successor states. So, considering our example, the formula
G(¬x → X¬x) would then be satisfied.

Fig. 2. Different kinds of traces

2.4 Conclusions

Among the different semantics we defined, we claim that an LTL verification tool
should allow the user to chose between them, depending on the kind of system
under study and on the current verification task: simulation, fast scenario finding,
or property verification. This is why we included the different semantics within
our solver.
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3 Tatam Solver

In this section we present our solver Tatam1 (Transition And Theory Analysis
Machine), which implements the the proposed verification technique and relies
on the SMT solver Z3.

3.1 Model Description

A model in Tatam is a transition system where the states are defined through the
declaration of constants and variables over different possible concrete domains
(also called data types in the remainder) that are commonly handled by SMT
solvers such as Z3: Booleans, bounded integers, unbounded integers, real num-
bers. As we will see, the use of infinite data types has a consequence on the
termination of some procedures.

The rest of the model is described in a usual way by an initial condition, con-
straints on all states (called invariant) and constraints on the transitions, which
are all Boolean formulas. The atoms of these formulas refer to the state variables.
The possible reasoning (variable comparison, arithmetic, call to uninterpreted
functions) comes form the theories that are supported by Z3. Within constraints
on the transitions, variables can be primed to denote their value in the next
state (after the transition occurrence). We then define an LTL formula and ask
the tool to exhibit a trace of the model that satisfies the formula. Remark that
if one wants to check whether a formula ϕ is satisfied by all the model traces,
then ¬ϕ has to be specified in Tatam: either there is a trace satisfying ¬ϕ (so
it is not the case that ϕ is true for all traces), or there is no trace satisfying ¬ϕ
(so ϕ is true for all traces).

Finally, we specify the kind(s) of traces that we consider in the analysis:
infinite, truncated, finite (meaning maximal finite) or any combination of
the three kinds. For instance, if we want to consider maximal finite traces, we can
specify infinite + finite. Additionally, we can specify bounds on the trace
length: search[1..20] means we only search for traces of length k ∈ 1..20. If no
bound is specified, the search will go on for any k ∈ N until a trace is found or
a completeness threshold is reached. To check whether a completeness threshold
has been reached for each new length k, we use the keyword complete. Notice
that if there is no trace satisfying the formula and if complete is not specified,
then the analysis obviously does not stop. Figure 3 shows the transition system
presented in Sect. 2.3, with the LTL formula F¬x.

3.2 Resolution

Our resolution method is based on an SMT encoding of the BMC problem as
presented in [10]. We present here the main ideas of the encoding of the different
kinds of traces and of the treatment of the complete option.

1 https://crates.io/crates/tatam.

https://crates.io/crates/tatam
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Fig. 3. Tatam simple example

Common Segment. In our encoding of the BMC problem, the part that is
common to the different semantics consists of

– k unfoldings of the transition relation, which provides k+1 states Si (i ∈ 0..k),
– and the encoding of the LTL formula, including the semantics of the LTL

connectives that are included in the LTL formula.

Each state variable that is declared in Tatam gives rise to k + 1 SMT variables
(one for each trace state) in the encoding. Each transition step (Si, Si+1) is then
encoded as an SMT formula T (Si, Si+1) over the corresponding SMT variables.
Similarly, the initial conditions are encoded as an SMT formula I(S0). Given
a transition system M, we denote by �M, k� the SMT formula encoding the k
unfoldings of the transition relation:

�M, k�
def= I(S0) ∧ T (S0, S1) ∧ . . . ∧ T (Sk−1, Sk)

We also need to encode the LTL formula ϕ provided by the user. To do
so, an SMT variable is created for each subformula (including ϕ itself) in each
state Si (i ∈ 0..k). Then, we specify constraints that express the semantics of
the toplevel connective of each subformula, e.g., the equivalence between XA
in the current state and A in the next state if XA is a subformula of ϕ, the
equivalence between GA in the current state and A and GA in the next state if
GA is a subformula, etc. This encoding of the formula is denoted by �ϕ, k�. For
instance, let us consider �ϕ, 2� with ϕ = Xp (where p is a Boolean variable). In
this case, the SMT variables are p0, p1, p2, which encode the variable p in states
S0, S1, S2, and (X p)0, (X p)1, (X p)2, which encode the formula Xp. We have
�ϕ, 2� = (X p)0 ∧ ((X p)0 ↔ p1) ∧ ((X p)1 ↔ p2) ∧ ((X p)2 ↔ p3).

As illustrated by Fig. 4, the part of the BMC encoding that is common to the
finite and infinite semantics says nothing about the semantics of the temporal
connectives in the last state (because this is precisely what differs from one
semantics to the other). Therefore, the common segment is defined by

�M, k� ∧ �ϕ, k − 1�
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Fig. 4. Trace encoding (common segment)

Truncated. The BMC problem according to the truncated semantics is encoded
as the conjunction of the common segment and a constraint trun(k) that specifies
the semantics of all the subformulas of ϕ in the last state Sk according to the
LTL semantics on finite traces: any subformula XA is false, any subformula FA
is equivalent to A, any subformula GA is also equivalent to A, etc. For instance,
considering ϕ = Xp, we have trun(2) = ¬X p 2.

Truncated BMC encoding : �M, k� ∧ �ϕ, k − 1� ∧ trun(k)

Infinite. The case of infinite traces is encoded in the traditional way using a
lasso-shape trace, as, e.g., in [10]. We use a constraint loop(k) that specifies the
existence of a loop and the semantics of the subformulas of ϕ according to the
infinite trace semantics and taking into account the loop in the trace.

Infinite trace BMC encoding : �M, k� ∧ �ϕ, k − 1� ∧ loop(k)

Finite. The BMC encoding for the maximal finite case (simply called finite in
Tatam) is more complex. For a system of length k, we search for a trace
that satisfies the formula ϕ with the truncated semantics (providing �M, k� ∧
�ϕ, k − 1�∧ trun(k) to Z3) . If such a trace τ exists, we prove that it is maximal.
To do so, we encode the trace τ in SMT and specify that it is extended with
another step of the transition relation. If this has no solution, we have proved
that τ is maximal finite. Otherwise, we search for a new solution τ of length
k using the truncated semantics. If no new solution is found, we increase the
number of transitions and repeat the process.

Complete. Determining whether a completeness threshold has been reached
is close to the treatment of the maximal finite case. The problem here is the
following: if no trace has been found until length k, we want to know whether it
is worth exploring length k + 1. To do so, we encode the BMC problem for the
length k + 1 considering the semantics which is chosen by the user (truncated,
infinite, maximal finite or a combination) and add a constraint specifying that
the last state is different from the other states. If there is no solution, then there
is no need to explore length k+1. If there is a solution, we need to go the length
k + 1.
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Optimization. The search for a trace that satisfies a formula proceeds by
incrementing the number of transitions. Consequently, the first solution found
is optimal in terms of length. However, in some cases we are looking for a trace
that minimizes (or maximizes) a criterion that makes sense from the point of
view of the model we are analyzing. Therefore, we’ve added the ability to search
for a trace that optimizes a criterion that is a language expression. Moreover,
when we want to optimize a criterion that refers to a variable, we need to specify
which state we’re talking about. In most cases, we’re looking for the first or last
state (or a shift) of the transition system.

To do this, we use the SMT solver’s ability to find an optimal solution for a
transition system of length k. When a solution is found, we add the constraint
that the other solutions must improve the criterion for the following number of
transitions. Thus, coupled with the complete semantics, the solver produces an
optimal solution for a given criterion. The example presented in Sect. 5 illustrates
an optimal trace search.

3.3 Conditions on the SMT Theories

Among the four main options of Tatam (truncated, infinite, finite and
complete) some are only possible under some hypotheses on the SMT domains
of the model. For instance, if the comparison between states is needed, which
is the case in the encoding of lasso-shape traces (infinite) and in the more
complex procedures involved for finite and complete options, then parameters
of variable functions need to be declared with a finite domain. Only the most
simple option (truncated) imposes no constraints on the domains. The most
demanding option is the finite one because it requires to iterate over all the
solutions that are returned by the SMT solver. This is why this option requires
constants and variables to be declared over finite domains in order to guarantee
the termination of the solving. On the other hand, the complete option does not
require constants to be declared over finite domains because there is no need to
ask for a solution with a different valuation of constants.

Note that for finite and complete options, the procedures do not directly
specify an SMT formula, unlike the truncated and infinite options. As briefly
explained above, the resolution in these cases involves more complex algorithms
that do multiple calls to SMT solvers. In some cases (such as an infinite domain
for variables or for parameters of variable functions) these algorithms do not
terminate. In such situations, we say that the problem is not expressible in
SMT. In case a problem is expressible, it is still possible that the SMT solving
does not terminate. In table 1, we call termination the fact that the problem is
expressible and the SMT solving necessarily terminates.

Table 1 outlines various conditions on the constant and variable domains
for the different options of Tatam. Of course, if multiple options are selected,
the strongest condition applies. F. denotes finite domains, I. denotes infinite
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domains; cst fun p. (resp. var fun p.) refers to constant (resp. variable) func-
tion parameters. Note that only the truncated option allows variable functions
with infinite parameters. Also note that for complete and finite options, the
Tatam problem is expressible in SMT with variables over infinite domains but
the termination is only guaranteed if all variables are declared on a finite domain.

Table 1. Conditions on the domain to ensure termination

constant variable cst fun p. var fun p.

F. I. F. I. F. I. F. I.

truncated ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

infinite ✓ ✓ ✓ ✓ ✓ ✓ ✓

finite expressible ✓ ✓ ✓ ✓ ✓ ✓ ✓

finite terminates ✓ ✓ ✓ ✓ ✓

complete expressible ✓ ✓ ✓ ✓ ✓ ✓ ✓

complete terminates ✓ ✓ ✓ ✓ ✓ ✓

4 Benchmarking

In this section, we present two simple benchmarks to assess the practicality
of our approach, rather than perfectly characterizing our tool against existing
ones. We compare the computation times of our prototype with the reference
tools NuSMV and nuXmv, which implement various resolution algorithms:

– BDD-based model checking, which is only applicable to finite domains, and
performs complete model checking,

– BMC (Bounded Model Checking), which is also applicable to finite domains,
and does not perform complete model checking: if no trace (or counterexam-
ple) is found for a trace length k, the tool cannot conclude,

– IC3 “bounded”, which performs K-Liveness translation from liveness to
safety and applies IC3 algorithm using a SAT encoding (applicable to finite
domains),

– IC3 “unbounded”, which is applicable to infinite domain variables, and per-
forms similarly to IC3 “bounded” but relies on an SMT encoding.

One way to see our approach is that we extend NuSMV/nuXmv implementa-
tion of BMC by handling infinite types and providing a completeness threshold
detection, which provides complete model checking.

Since the other tools do not handle maximal finite traces and some do not
handle truncated traces, we limit ourselves to the infinite trace case for the
comparison. To test the performance, we increase the problem size and measure
the solution time
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1. to find a trace satisfying an LTL formula,
2. and to prove the absence of traces satisfying another LTL formula (what we

call proof in the remainder of the article).

In practice, we used a formula which is satisfied by all traces for the first case
and its negation for the second case. For BMC, a sufficiently large bound on
transitions ensures complete coverage. All computations are performed on a
Intel(R) Xeon(R) W-11955M CPU @ 2.60GHz and 64GB of memory, with a
time limit of 10 min per iteration.

4.1 Leader Election

The first example we present concerns a leader election protocol [11], which
assumes a ring network of processes (nodes) with unique, comparable identifiers.
Each node can communicate with its successor in the ring by sending its own
identifier, or the identifier it received from its predecessor if it is greater than its
own identifier. If a node receives its own identifier, it considers itself as the elected
leader. We have modeled this system using Boolean variables only. The LTL
formula we checked says that there will eventually be a leader, or more precisely:
eventually one of the nodes will receive its own identifier. It is important to note
that, in this example, unbounded solution of IC3 is not possible because the
problem contains only Boolean variables.

Figure 7 shows the computation time of the different solvers on the y-axis and
the size of the ring on the x-axis. We observe that the use of BDD is significantly
more efficient than the other algorithms. Our solver behaves similarly to IC3
when it comes to finding a trace. However, its performance deteriorates when
searching for a proof (no trace), with only BMC performing worse in this case.

4.2 Arithmetic Sequence and Series

We designed our tool to handle problems involving unbounded variables, arith-
metic, and LTL formulas. However, most benchmarks in the literature focus
on discrete problems [12–16]. Our second example involves computing an arith-
metic sequence and an arithmetic series. We define the transition system for any
arithmetic sequence and series, adding the constraint that the series value must
be reached after a given number of iterations. The solver must find the initial
parameters and all values of the sequence and series. Figures 5 and 6 represent
the Tatam and SMV models, respectively, for iteration 10. To get an infinite
trace, we add a transition at the beginning of the series. Finally, the LTL for-
mula we check is GF(n = 0) and its negation, depending on whether we need a
trace or a proof.
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Fig. 5. Tatam Fig. 6. SMV

Note that we added bounds to the variable values to address the bounded
solvers and for the proof search. Figure 8 shows the computation time of the
different solvers on the y-axis and the problem size on the x-axis. This example
demonstrates the advantage of using SMT solvers for mathematical transition
functions to find a trace. We also observe that our solver is more efficient than
the IC3/SMT solution for computing traces. The algorithm we presented, which
indicates the termination of the BMC and enables proofs, is also very efficient
at computing proofs when others struggle.

Fig. 7. Leader election benchmark Fig. 8. Arithmetic series benchmark

5 Example

In this section, we present a simple example to demonstrate the value of the
different semantics that we introduced earlier. This example is inspired by several
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analyses that were performed on real robotic systems. We want to model a small
robot that makes deliveries from a factory to a client. When a delivery is ready at
the factory, the robot must load boxes, go to the client, and unload the box. If the
delivery is incomplete, it must return to the factory and start again until all the
boxes have been delivered. The robot consumes fuel during its movements. The
fuel consumption depends on the number of transported boxes. The capacity of
the robot (the number of boxes it can transport at a time) is 5, and the number
of produced boxes is 3. The robot tank, which is full initially, has a size of 30.
It consumes 1 for a trip from the client to the factory. From the factory to the
client, it consumes 10 if it is carrying 2 or less of boxes, and 25 otherwise.

5.1 Transition System

The system state is described by five variables: representing the state of the
robot, its tank, and the number of boxes in the factory, on the robot, and at the
client. Figure 9 shows an extract from the variable declaration, the definition of
the initial state and an invariant.

There are six transitions: loading, corresponding to the loading of at
least one box on the robot; unloading, the unloading of the cases present
on the robot once it has arrived at the client; start to client representing
the departure to the client; finish to client representing the arrival at the
client; start to factory and finish to factory for the movement to the fac-
tory. Figure 10 shows the definition of the transitions start to client and
finish to factory.

Fig. 9. Variables, Init, Inv Fig. 10. To client transitions
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5.2 Properties

Now, let us study some typical expected properties, with the corresponding
semantics for each of them.

Complete Delivery. The first property we want to check is whether it is
possible to deliver to the client. In this case, we look for any trace, finite or
infinite, that reaches a state where the delivery is done. Thus, it is enough to
ask the solver to find a trace satisfying F (client boxes = produced boxes)
according to the truncated semantics. Our solver finds a trace of length 4 in
which the robot loads all the boxes, goes to the client, and delivers all the
boxes. When it arrives at the client, the quantity of fuel in its tank is 5. Since
our solver works by incrementing the length the candidate trace, the proposed
solution necessarily has the minimum length.

Break Down. Next, we want to find out if it is possible for the robot to run out
of gas on its way to the client. Notice that in our model, this does not necessarily
correspond to a state where the value of the tank is 0. Indeed, if the if the value
of the tank is less that what is needed to reach the client, then the transition
finish to client cannot occur, so the value of the tank is not decremented. A
possibility to specify this situation consists in expressing that the robot reaches
the state ToClient and does not leave this state: FG(robot state = ToClient).

If we search for a trace with the infinite semantics, the solver will not find a
trace, because there is no infinite scenario that satisfies this formula. And yet it
can happen!

If we use truncated semantics, the solver finds a trace of length 2 that satisfies
the formula. The truncated trace that stops at the first move indeed does satisfy
the formula. However, this trace does not correspond to a complete scenario (the
robot can keep moving) and therefore does not match what we are looking for.

Finally, when we look for a trace with the maximal finite semantics, the
solver shows a trace of length 14 in which the robot runs out of fuel. This
happens when the robot picks up boxes one at a time, so on its first trip to the
client it has 20 left in its tank, on its second trip it has 9 left, and on its last trip
to the client it has 8 left and runs out of fuel because it needs 10 to get there.

Optimal Delivery. Now, we want to find the best way to deliver to the client,
the one that minimizes fuel consumption. To do this, we can use our solver
optimization search and tell it that we are looking for the trace that maximizes
the amount of fuel in the final state of the trace. The solver finds a trace of
length 10 in which the amount of fuel is 9. This solution is optimal from the
point of view of the criterion (in this case, remaining fuel). Figure 11 shows the
different searches performed for this example2.

2 https://github.com/DavidD12/tatam/tree/main/files/icfem 2024.

https://github.com/DavidD12/tatam/tree/main/files/icfem_2024
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Fig. 11. Example searches

6 Conclusion

We proposed a way to perform LTL model checking for finite and infinite traces.
Our method is based on an SMT encoding and on classical BMC. The use of
an SMT solver enables the use of concrete variable domains, such as bounded
and infinite integers and real numbers. We also used a simple criterion to detect
that a completeness threshold has been reached for the length of traces. This
provides a complete model checking procedure, which necessarily terminates in
case the concrete variable domains are finite. We experimented our tool and
compared it to NuSMV and nuXmv.
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Abstract. Blockchain technology has evolved beyond its initial role
in supporting cryptocurrencies like Bitcoin, with Ethereum introduc-
ing smart contracts for decentralised applications in various domains.
However, ensuring the safety and security of smart contracts remains
a critical challenge, particularly concerning concurrency issues. This is
of paramount importance because the smart contract ecosystem is con-
current by nature as its underlying blockchain is decentralised, and the
concurrency-related vulnerabilities within smart contracts have resulted
in substantial financial losses.We observe that in the literature, concur-
rency is handled with two strong assumptions, leading to either unde-
tected attacks or false alarms. Taking the Safe Remote Purchase smart
contract as a case study, we investigated the root causes and intro-
duced a novel method that incorporates blockchain-specific character-
istics into the verification process. Our contributions include a formal
framework, an automated model generator, and a compelling case study
that illustrates a reduction in false attacks, thus advancing the state
of smart contract security in blockchain ecosystems. The formal models
and the framework generator are available online at https://github.com/

FormalVerificationBlockchain/Concurrency.

Keywords: Smart Contracts · Concurrency · Formal Verification ·
Blockchain

1 Introduction

Blockchain was introduced as the fundamental technology for supporting the
well-known cryptocurrency—Bitcoin in 2008. Later, Ethereum [26], known as
Blockchain 2.0, aims to provide an open and decentralised platform for general-
purpose computing through the introduction of a groundbreaking concept called
smart contract. It enables the development of decentralised applications across
various domains, from finance to supply chain management.
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Smart contracts, which are Quasi-Turing-Complete programs running on top
of a blockchain, have a unique feature that, once deployed, it is costly to change
them (i.e., patching is nearly infeasible) due to the irreversible feature of the
underlying blockchain that stores the programs. Therefore, verifying the cor-
rectness of smart contracts before deploying them to a blockchain is crucial.
Time and again, incidents have led to huge financial losses due to bugs, breaches
and logic flaws in smart contracts—e.g., the well-known DAO attack [18], Par-
ity Multisig Wallet attack [8], and the King of the Ether Throne attack [1].
A variety of techniques have been developed to verify the safety and security
of smart contracts and their applications in the past several years, including
design patterns [27], informal vulnerability detection [3] and formal verification
approaches [24]. Formal verification stands out because many smart contract
applications are safety-critical e.g., supply chain, finance, and medical services,
and formal verification provides rigorous proof contrary to other approaches.

However, most of the formal verification techniques take smart contracts inde-
pendently, isolating them from other participants, and consider their semantics
as sequential programs, as pointed out by Sergey and Hobor [17]. Such meth-
ods overlook complex interactions and can lead to security risks. Luu et al. [13]
first identified security issues caused by the network participants, particularly
pointing out that the transaction orders are non-deterministic, which can be
utilised by malicious users to gain benefits, known as the Transaction-Ordering
Dependence (TOD) problem. A subsequent study [17] generalised the problem
to be the concurrency issues and introduced two additional types of concurrency
scenarios: Multitasking and Multi-Transactional Tasks, by drawing analogies to
the concurrent objects in shared memory in the well-studied concurrency field
named as concurrent-objects-as-contracts.

To address these concurrency issues, Luu et al. [13] developed a tool, OYENTE,
to detect TOD in smart contracts based on symbolic execution. Although rig-
orous, OYENTE still suffers from a large number of both falsely reported TOD
and missed TOD cases because its execution environment of Ethereum is not
fully simulated [15]. This observation was also noted by Sergey and Hobor [17],
highlighting that verification of smart contracts requires modelling the interac-
tions with other components. While Sergey and Hobor [17] demonstrated the
concurrency problems using example smart contracts and their vulnerabilities,
they did not delve into verification approaches. Building upon this approach—
concurrent-objects-as-contracts, a later work [16] took the first step towards for-
malising concurrency. Taking the Safe Remote Purchase smart contract as a case
study, the work [16] studied its source code, modelled the smart contract using the
Communicating Sequence Processes (CSP), proposed an attack model, and veri-
fied the existence of a concurrency attack using the model checker FDR.

Upon examining the model and verification in [16], we identified two limita-
tions: 1) The attack is not automatically detected. The attack model represented
as a trace embedding of the identified vulnerability, requires the analysts to have
prior knowledge of vulnerability exploration and analyse it manually. 2) More
significantly, naively adopting the concurrent-objects-as-contracts approach
results in false attacks. We show that the attack reported in [16] is, in fact,
a false alarm in the context of the blockchain ecosystem.
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The first limitation can be straightforwardly addressed by modifying the
query, given that most model checkers are capable of automatically detecting
concurrency issues, as shown in Sect. 4. The second limitation stems from a
misunderstanding of the blockchain foundation, which is more challenging. The
blockchain foundation cannot be treated as a single machine, as demonstrated
in the above works; otherwise, there will be concurrency vulnerabilities. On
the other hand, the transactions are not executed in a completely interleav-
ing manner; otherwise, there will be false attacks. To strike a balance between
these two ends of the spectrum of modelling approaches, we show that includ-
ing a blockchain component in the modelling, even an abstracted one, would
address the limitation. Moreover, we developed a general method by proposing
a verification framework that facilitates verification beyond the case study.

The contributions of this work can be summarised as follows:

– We identified false attacks within existing approaches to verify the concur-
rency of smart contracts and have investigated their root causes, namely the
absence of a correct blockchain execution model.

– We proposed an approach that addresses the identified issue by modelling the
environment participants, including the blockchain and the external actors.

– We generalised the approach and developed a script to automatically generate
formal models that facilitate the verification of smart contracts.

2 Concurrency Issues

EVM is a single-threaded state machine which cannot process instructions in
parallel (except parallel EVM e.g., [25]), suggesting that smart contract methods
can be deemed, in a traditional programming context, as sequential programs.
This is deceptive and misleading, given concurrent behaviours e.g., reentrancy
and recursive calls, can still be observed, if investigating it from a different
perspective—at the level of blockchain ecosystem. More specifically, the following
complications have been observed and demonstrated in the literature:

Transaction-Ordering Dependence. Although each transaction is always
deterministic, non-determinism may still arise from races between transactions
i.e., out-of-order executions from the perspective of an external actor, leading
to distinct outcomes. For instance, malicious external users could front run a
transaction by providing higher fee (front-running attack), and malicious miners
could reorder transactions to gain profits (Miner Extractable Value attack) [10].

Multitasking. Calling other contracts or oracles, dictates an explicit “yield” or
“relinquishment” of control that will not be handed back to the caller until the
callee contract returns. During this time, several things can go wrong: The callee
contract can run whatever code it likes or even call other external contracts to
engage in unexpected activities without getting interrupted. The caller may be
malicious e.g., in the DAO attack the caller re-enters the smart contract to draw
extra fund. The callee’s input arguments and return values are passed using
volatile memory space that may be compromised.
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Multi-transactional Tasks. The contract logic of some programming tasks,
which should conceptually be grouped into a single logical transactional entity,
sometimes needs to be separated across multiple physical blockchain transac-
tions. Between these transactions, other transactions whose method invocation
may involve manipulation of the state unanticipated by the original proposing
actor, can take place, resulting in true concurrent behaviours.

Fig. 1. Example Smart Contract Code with Concurrency Issues.

Example 1 (Smart Contract with Multi-transactional Issues). The smart con-
tract in Fig. 1 has three functions: a constructor function that imitates the
smart contract by assigning values to id and count, a get function that reads
the value of count, and a set function that updates the count value and transfers
fund worth the previous count value (i.e., oldCount) to the caller.

Imagine the following scenario: Alice wants to update the value count by calling
the function set, and before doing so, she first calls the function get to check how
much fund she would receive i.e., the current value of count. Even the order of
Alice’s transactions (get followed by set) is correctly preserved, other problem
arises, as there is no guarantee that other function invocation requests won’t
be scheduled in between Alice’s two transactions. For example, Bob may have
called the set in between, which resets the count value. In this case, Alice would
get a different amount of fund (Bob’s updated value of count) and Bob’s set
value of count will be re-written by Alice’s update.

Multi-transactional behaviours are the problem that the concurrent-objects-
as-contracts approach claims to be able to address. Note that the above concur-
rency issues in Example 1 is a true attack, which can be confirmed by both the
concurrent-objects-as-contracts approach and our formal verification framework
(detailed in Sect. 5.2). In contrast, in the subsequent section, we show another
smart contract as our running example to demonstrate false attacks occur if
using the concurrent-objects-as-contracts approach naively.

3 The Safe Remote Purchase Smart Contract

We analyse the same smart contract—the Safe Remote Purchase—as in [16] that
uses concurrent-objects-as-contracts approach.

3.1 The Case Study Smart Contract

The smart contract aims to help mutually distrusting parties, for example, a
seller and a buyer in the simplest configuration, to achieve a safe and reliable
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Fig. 2. Flowchart of Safe Remote Purchase Transaction [16].

Fig. 3. Solidity Code of Safe Remote Purchase [19].

purchase transaction on a decentralised e-commerce platform built on top of
Ethereum, by resolving the issue with the confirmation of the shipment and the
acknowledgement of the confirmation prior to settlement (Fig. 2). The general
strategy proposed by this contract is to enforce a guaranty/deposit of twice the
value of the item to be transferred into the contract account as escrow on both
parties of a remote purchase transaction. The deposit stays locked until the buyer
confirms the receipt of the goods, triggering a refund of the appropriate amount
to both parties, i.e., the value equivalent to half of the deposit to the buyer and
three times the value equivalent to the guaranty plus the value to the seller.

The solidity code of the smart contract is shown in Fig. 3. The construc-
tor function (lines 19–23) is called by the seller to create a contract and pay
the guaranty. Then, the buyer can initiate a purchase by calling the function
confirmPurchased with the payment of a deposit as a parameter (“msg.value”).
Then, the smart contract locks the payment (line 33). After the seller delivers
the purchased item, the buyer invokes the function confirmReceived to notify the
contract that the item has been received, where the smart contract refunds the
seller and buyer i.e., releasing the lock and paying the corresponding funds to
the seller and buyer (line 37–39). In this process, the seller is allowed to abort
the contract by calling the function abort. The abort function sends the balance
of the contract to the seller (line 27).

3.2 Formal Analysis of Concurrency in Existing Work

Wang et al. [16] showed an attack trace when performing model checking
using the concurrent-objects-as-contracts approach, i.e., analogous concurrency
in smart contracts to racing problems in traditional concurrent programs. The
vulnerability discovered lies in-between the execution of line 28 in Fig. 3, which
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sends deposit to the contract account, and line 33, which locks the payment.
From a concurrency perspective, in this specified period, the seller is allowed to
call the abort function, which changes the state of the purchase to be aborted
and the total balance of the contract’s account, containing the guaranty/deposit
of both seller and buyer, will be transferred to the seller’s account.

Critiques. We identified two limitations of the above formal modelling and veri-
fication: First, differing from traditional model checking approaches, this model
came up with an attacker trace in advance as the input to the FDR model checker
to only confirm the existence of such a counterexample trace in all possible exe-
cutions of the modelled smart contract. The attack trace is an artefact usually
not available beforehand, as no one would be able to know what kind of attacks
can be launched against some vulnerabilities that may or may not even exist in
his/her built contract. Second, this model lacks environmental considerations,
such as expected and unexpected user interactions, e.g., possible behaviours of
a seller/buyer through the provided interfaces (those demonstrated in Fig. 2).

4 Analysing Existing Verification Approach in PAT

The first critique can be straightforwardly addressed, as the attack trace can
be automatically identified by many existing model checkers. We illustrate it by
mimicking the modelling and verification of [16] using the CSP # modelling lan-
guage supported by the model checker PAT (Process Analysis Toolkit) [21]. The
reason for choosing another model checker is that the approach used in [16] lacks
support for state variables and many other common programming constructs for
flow controls, which hinders our goal of developing a general framework (detailed
in Sect. 5), while PAT enables us to develop external libraries and functions.

4.1 Introduction to CSP# and PAT

PAT is a self-contained framework that supports the composing, simulating, and
reasoning of concurrent systems using various model-checking techniques. More
importantly, PAT has been developed as a generic framework, which can be
easily extended to support new modules and frameworks. The input language of
PAT is CSP#, whose syntax is shown in Definition 1.

Definition 1 (Syntax of Processes in CSP#).

P, Q ::= Stop | Skip | e → P | e{prog} → P | c!exp → P | c?x → P |
P []Q | if(b){P} else {Q}| ifa(b){P} else {Q}| P ;Q| P ||Q| P |||Q

Stop and Skip are processes denoting inaction and termination, respectively.
Process e → P engages in an atomic event e first and then behaves as process
P . The event is allowed to attach an atomically executed program, denoted
as e{prog} → P . Channel communication is supported: c!exp → P denotes
sending exp over channel c, while c?x → P denotes reading from channel c and



Concurrency in Smart Contracts 397

referring to the message as x. Two types of choices are supported: P []Q denotes
unconditional choice, and if(b){P} else {Q} is conditional branching, where b is
a boolean expression. ifa(b){P} else {Q} is a variation of conditional branching
that performs the condition checking and first operation of P/Q together. There
are three types of process relations: Process P ;Q behaves as P until P terminates
and then behaves as Q. The parallel composition of two processes is written as
P ||Q, where P and Q may communicate via multi-party event synchronisation.
If P and Q only communicate through variables, then it is written as P |||Q.

4.2 Mimicking the Modelling of the Existing Work

To demonstrate the capability of PAT, we first faithfully replicate the model
in [16] into a corresponding CSP# model with all required modifications to
maximise the semantic equivalence between them. That is, we expect to see the
same result as in the previous work, which may not be correct. Essentially, each
function in Fig. 3 is modelled as a process in CSP#, and the smart contract is the
interleaving of the functions, as shown in Fig. 4. The modelling is straightforward:
the model of function constructor is in line 8–12 in Fig. 4; the model of abort is
in line 13–19; confirmPurchased in line 21–28; and confirmReceived in line 29–33;
line 34 is the composed smart contract.

Fig. 4. Replicated CSP# Model Code Snippets of Safe Remote Purchase [16].

To address the second critique (cf. Sect. 3.2), we integrate additional pro-
cesses (the processes in line 35–38 in Fig. 4) to model the behaviours of external
actors—the seller (deployer) and the buyer, to make this model complete. The
external actors use the channel constructs to communicate with the smart con-
tract functions, modelling the invocation of the functions in real-world scenarios.
The input operations in the channel constructs must have the corresponding out-
put operations to be specified in order to prevent a deadlocked scenario; there-
fore, we correspondingly add channel receive at the beginning of each function
(i.e., line 9, 14, 21 and 29 respectively).

We then formalised concurrency as assertions using the supported LTL (Lin-
ear Temporal Logic). The assertion (line 39 in Fig. 4) captures the interference
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Table 1. Verification Result of the Replicated CSP# Model.

Assertion BlockchainSystem() —= [](purchase confirmed -> !<>abort)

Counterexample init -> constructor!10 -> access!BUYER -> buyer!10 -> constructor?10 ->

seller guaranty eth msg value -> state created -> access?BUYER ->

access!BUYER -> warning -> access?BUYER -> access!SELLER ->

buyer?10 -> purchase confirmed -> access?SELLER -> abort

between the confirming purchase and aborting by querying the statement—if
the purchase is confirmed, then the seller would not abort.

Verification Result Evaluations. Running this CSP# model in the PAT model
checker produces the verification result as shown in Table 1 with a counter-
example trace given as the proof of the invalidity of the assertion that states the
safety property of this contract, resembling the attacker model trace presented
in the original literature. Although not exactly identical, it captures the same
attack trace where the event abort (line 13 in Fig. 4) is preceded chronologically
by the event purchase confirmed (line 24). As a consequence, the whole smart
contract balance (comprised of guaranty/deposit from both buyer and seller) is
transferred from the contract address to the seller address in the function abort
immediately after the deposit transfer from the buyer address to the contract
address, but before the state transition (from CREATED to LOCKED in line
25) operation gets performed in the function confirmPurchased (to bypass the
pre-condition check of the function abort). This reveals a potential vulnerability
inherent in the original contract design, which may be exploited by a malicious
seller to successfully steal the deposit of the buyer if they can somehow manip-
ulate the execution to enforce this particular sequence of executions.

Modelling Strategy Critiques. However, the above-described attack, identified
in [16] and our above verification, in reality, is not feasible given the underly-
ing execution model of EVM where a transaction that encapsulates a contract
function invocation is an atomic operation that cannot be divided into several
chunks for executions, and thus, a contract function whose execution cannot be
interleaved with other functions is either completely done or not at all, implying
that a false positive result is found based on this wrong assumption.

4.3 An Analysis of Issues in Existing Methods

The above false positive originates from a wrong interpretation of the execution
model of EVM. In reality, the function abort can never get its turn for execution
until the other function confirmPurchased fully finishes in the example contract.
It is an incorrect use of the interleaving operator to compose the three possi-
ble actions to be performed by an external participant, corresponding to the
processes Abort, ConfirmPurchased, and ConfirmReceived in Fig. 4.

In this particular case, there is an easy fix i.e., replacing the interleaving of
the three processes (Abort, ConfirmPurchased and ConfirmRecieved) with uncon-
ditional choices of all possible permutations of these three constituent processes
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sequentially composed with each other. In this way, only one single function can
be executed sequentially until termination without being interrupted/preempted
by other functions. However, writing this kind of long process definition span-
ning over more than five lines is tedious, error-prone and unsustainable. Given
that there are in total n! permutations for n constituent processes, hinting that
it will soon become impractical to write them by hand when n becomes larger
as it demands O(n!) time to verify the result, making the modelling alone is
an NP-hard problem already, which suffers from combinatorial explosion, before
we even start tackling the state explosion issue that we are likely to encounter
during the verification.

In addition, the model (in [16] and thus the same in the above model) does not
handle the case of subsequent attempts of function invocations after the created
purchase order has been finalised, i.e., the processes are only executed once.
The likelihood of the functions abort, confirmPurchased, and confirmReceived
being invoked multiple times in arbitrary order due to the contract’s immor-
tality once deployed (assuming no self-destruct function) can render verification
results flawed. Without accurately reflecting these non-terminating behaviours
in the model, the state space may not cover all possible intricate interactions,
potentially leading to unexpected side effects and false positive vulnerabilities.
This issue can be resolved by making these processes recursive. Similarly, naive
recursion without the correct execution model of the underlying EVM over-
approximates the state space since transactions in a block are executed after
the transactions in the previous blocks, prompting the development of a general
framework to reduce false positives in verification results.

5 Our Approach

The above analysis indicates that the challenges can be addressed by modelling
the correct interpretation of the execution model of EVM. Instead of adding a
process of the EVM merely working for this case study, we aim to tackle the
problem in general, as we observe that there is a clear line of demarcation drawn
between the control logic (the underlying blockchain) and the business logic (the
smart contract functions) being common to the modelling of any smart contract,
whether already deployed or yet to be developed. This inspired us to develop a
modelling approach that can be extended into a standard practice in the form of
a universal framework that can be easily and effectively exploited by an average
smart contract verification engineer.

In a nutshell, we abstract away unnecessary details in the control logic and
separate it from the actual business logic, which is unique and thus must be
independently specified and tailored by the model engineer for each target smart
contract so that the control logic common to all contract model specifications
can be automatically generated by our framework to address the main chal-
lenge of misunderstanding issues, which eventually ties back to a reduction in
the false positive rate of the verification results and in turn becomes an improve-
ment in the precision of the verification outcomes in general while accounting
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Fig. 5. Correct Model of Safe Remote Purchase (part 1).

for other concerns, including a faithful translation of the possibility of never-
ending invocations of functions exposed by an alive contract on the chain and
the incorporation of the environmental factors such as consensus clients into the
framework to leave space for further extensions as part of the future work.

5.1 Correct CSP# Modelling

Following the approach, in the case study, the business logic model is roughly
the same as the previous smart contract modelling in Fig. 4, except that tiny
modifications (detailed later) and syntactical renaming of events (see Fig. 5). In
addition, we added recursion to model that a function can be called multiple
times, line 1–3 in Fig. 6.

The newly added model component is the control logic and its interface shown
in Fig. 7. In the control logic, we model an abstracted blockchain (line 34) consist-
ing of Blockchain nodes (line 33) running a consensus algorithm (line 27). Each
blockchain node has an EVM that stores all the smart contract functions and exe-
cutes functions to update the global state upon invocation. In the case study, this
is modelled by allowing the node to be able to execute all the smart contract func-
tions i.e., calling the interface of the smart contracts (line 24). Since the EVM is
a single machine, meaning that each function is executed atomically, the relations
between the executions are internal choices capturing that once called, the func-
tion execution is not interrupted by other functions in the same EVM, which is
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the key to avoiding false attacks. The non-determinism is modelled by the uncer-
tainty of the node who proposes the block, i.e., which node is the next to execute
the triggered smart contract functions in EVM. In reality, the consensus algorithm
decides the block proposer. There are various consensus algorithms and modelling
them in details is challenging as stated in [22]. In this work, serving the purpose
of reducing false attacks, does not require full details of the consensus algorithms.
Therefore, we model an abstracted version in the consensusClient process (line 22–
26), where the nodes take turns to be the block proposer. While some blockchain
uses this model (e.g., Tendermint implements a round-robin approach to decide
the schedule of nodes), it is indeed a naive approach that may suffer from attacks
(e.g., malicious nodes may prepare a fork of the chain to launch double spending
knowing the scheduling of the proposers). We assume the nodes are honest and
leave the full detail modelling of consensus to future work.

The left part of Fig. 7 (line 10–21) models the interfaces between the actual
smart contract model (business logic) and the blockchain model (control logic).
That is, once a proposer is decided in the ConsensusClient, the corresponding
node executes ExecutionClient to call the smart contract function in the node’s
transaction pool. We assume there is only one transaction in a block to ensure the
occurrence of Multi-Transactional behaviour. Extending to multiple transaction
executions is easy by making them recursive. The calling of the transaction is
implemented in the corresponding interface. Once called, the interface sends
a message to trigger the actual smart contract function defined in the smart
contract model (the business logic in Fig. 5), thus linking the control logic (the
blockchain) with the business logic.

Note that the events are renamed to provide meaningful information, com-
pared to the replicated model where the same event names are used as in the [16],
but they are semantically equivalent. In addition, to enable the interface to work
correctly, the process of each smart contract function added a receiving message
event at the beginning to model receiving signals from the interface i.e., line 14,
23, 37 and 51 in Fig. 5.

Fig. 6. Correct Model of Safe Remote Purchase (part 2).
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Fig. 7. Modelling the Blockchain in Control Logic (right) and its Interface (left).

Verification Results. The verification results produced by running our CSP#
model in the PAT model checker are shown in Table 2. Given that the assertions
inherently convey their semantics, we refrain from reiterating them for the sake
of brevity. The results prove non-existence of any vulnerabilities pertaining to
the interleaved executions of contract functions and infeasibility of launching the
attack described in Sect. 4.2 in practice to steal the funds deposited by the buyer,
via demonstrating the validity of the last three assertions and the invalidity of the
first assertion contradictory to the conclusion drawn from Table 1. We therefore
conclude that the original contract design is in fact robust to any finely crafted
attacks in the form of well planned sequences of function invocations and the
result reported in the original literature [16] is challenged and shown to be a
false positive alert based on our model built under the correct assumption of the
execution model of Ethereum blockchain.

Modelling Strategy Comparisons. Essentially, integrating the blockchain frame-
work into the modelling process consistently enforces mutual exclusive access
to the execution of each constituent process that represents its respective con-
tract function. This is achieved through cooperatively running execution clients
and consensus clients of all participating nodes, as represented by the pro-

Table 2. Verification Result of Our Correct CSP# Model.

Assertion Validity

BlockchainSystem() reaches non constant balances NOT VALID

BlockchainSystem() —= [](item received && buyer is SELLER ADDRESS -¿

¡¿(buyer balance remains unchanged && seller balance remains unchanged)) VALID

BlockchainSystem() —= [](item received && buyer is BUYER ADDRESS -¿

¡¿(buyer balance deducted by item price value

&& seller balance added by item price value)) VALID

BlockchainSystem() —= [](aborted -¿ ¡¿(buyer balance remains unchanged

&& seller balance remains unchanged)) VALID
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cess BlockchainNetwork in our framework. Despite the semantic implications
of the actual construct used—either interleaving operators or general choice
operators—in defining the process, this integration characterises all possible
interactions with the contract.

We have also effectively tackled the oversight of the potential scenario of
successive attempts to invoke the function Abort, ConfirmPurchased, and Con-
firmReceived multiple times in unanticipated order, independent of the current
state of the contract (e.g., even after the finalisation of the purchase order),
so as to expand the derived state space to encompass these non-terminating
behaviours, ensuring comprehensive coverage of their side effects towards the
overall correctness of the contract. In addition, to ensure it works correctly, their
soundness criteria must also be properly model-checked during the verification
phase, leading to the extra assertions and verification results in Table 2.

Correctness. The correctness of this CSP# model mostly lies in the accuracy
of our framework with respect to the correspondence between the actual exe-
cution model of Ethereum and constructs used for modelling their abstracted
behaviours (e.g., scheduling of smart contract function executions), in particu-
lar, the use of those synchronous channels for both inter-node and intra-node
communications, the use of the general choice operator in defining the process of
the execution client, as well as the way in which a simplified blockchain node is
defined in terms of cooperatively running execution/consensus clients. We have
provided detailed justification in our Github report; for the sake of brevity, no
further explanations are given here.

Limitations. In the current model, intricacies of network data transmission have
been fully abstracted away from our framework and replaced by reliable channels
for the sake of simplicity, and all possible interactions initiated by a third-party
proxy contract have been intentionally omitted due to possible combinations of
such interactions being infinite. We modelled an ideal consensus omitting failure
in consensus mechanism e.g., the actual order in which transactions are processed
may differ from the expected order of executions when assuming no failures
during the consensus procedure if dismissing this aspect of the environment
when model checking any smart contract of interest.

5.2 A Generalized Formal Framework in CSP#

To generalise the approach beyond the Safe Remote Purchase case study, we
formalised it into a framework. In particular, we implemented a script (see Fig. 8)
to generate the control logic automatically. Since the “business logic” of a smart
contract is application-specific, it needs to be modelled manually.

To test the model generator and evaluate that the approach would not miss
out on concurrency attacks, we verified the smart contract in Example 1 that
truly suffers from concurrency issues to confirm the ability of our approach to
detect concurrency vulnerabilities. We manually modelled the business logic of



404 Y. Yu et al.

Fig. 8. Blockchain Model Generator.

Fig. 9. CSP# Blockchain Framework for Example 1 Smart Contract.

the smart contract1. The generated model of the “control logic” smart contract
is shown in Fig. 9, where the main difference lies in the generated interface (line
9-16) and their invocation (line 19) in the process of the blockchain nodes i.e.,
ExecutionClient. We then integrated the smart contract model with the generated
model. The verification result confirms the expected concurrency vulnerability.

These two case studies demonstrate that our framework empowers users to
model with greater precision and accuracy, the non-determinism stemming from
transaction races i.e., invocation requests to contract functions, which are often
mishandled by average model engineers, leading to the inclusion of unlikely exe-
cution sequences in the state space for verification, resulting in false attack
alarm and unnecessary labour for rectifying them. Our primary contribution
lies in reducing false positive cases by correctly modelling all possible transac-

1 The modelling is straightforward and thus we do not explain them here. For details,
refer to our Github.
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tion orders and reducing false negative cases by including potential conflicting
transaction executions in the state space. Leveraging our generator script, which
separates control logic from business logic, enables more diverse modelling strate-
gies: Users can use the interleaving operator to compose the smart contract func-
tions without considering how exactly the underlying blockchain schedules the
actual execution sequence; The common application-agnostic details observed in
all types of smart contract are abstracted into a separate model component i.e.,
the blockchain framework, for automatic generation. This framework frees the
model engineers from the need to possess this knowledge, thereby enhancing the
generalizability of our framework.

6 Related Works

Security of smart contracts and blockchain vulnerabilities have been extensively
surveyed in [4,9,13]. Concurrency issues discussed in this work spans over several
surveyed attacks, as shown in Sect. 2.

To address smart contract vulnerabilities, various verification techniques
(surveyed in [2]) and tools (surveyed in [3]) have been developed, including
testing-based approaches (like [11]) and static analysis based approaches (e.g.,
symbolic execution [13]). These approaches heavily rely on known patterns and
cannot guarantee correctness and security. On the other hand, formal verification
approaches that overcome such limitations, have also been developed (surveyed
in [24]) including theorem proving based approaches e.g., [20], model checking
approaches e.g., [12] and abstract state machines based approaches e.g.., [5,6].
However, these approaches verify smart contracts independently. Exceptions that
consider other participants in specific attacks have been discussed in Sect. 1. In
contrast, there are much less works on formal verification of blockchain due to
its complexity, with exceptions including [7,14,23].

The concurrency issue in this work involves the specification and verification
of both smart contracts and their blockchain environment. Notable techniques
for addressing concurrency issues have been introduced in Sect. 1.

7 Conclusions and Future Work

Aiming to assist model engineers in constructing correct and precise models of
smart contracts that involve non-determinism arising from the races between
transactions, which are often overlooked or mistakenly handled by an average
model engineer, this work proposes a formal framework that facilitates a holis-
tic inclusion of transaction executions to reduce the false attacks in verifying
concurrency of smart contracts, achieved by recognising the commonality of the
separation of the control logic from the business logic of the smart contracts.

Recognising the limitations of the framework (as mentioned earlier), the pri-
mary focus of future work is to address them by offering more detailed consen-
sus and network integration. Additionally, another area for future exploration
involves integrating the other types of concurrency in smart contract execution
into the framework, where the challenge is the necessary manual translation.
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